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ABSTRACT
We analyze the dynamics of two-dimensional stationary, line-driven winds from accretion disks in

cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed
by Castor, Abbott, & Klein for O stars. Our main assumption is that wind helical streamlines lie on
straight cones. We Ðnd that the Euler equation for the disk wind has two eigenvalues, the mass-loss rate
and the Ñow-tilt angle with the disk. Both are calculated self-consistently. The wind is characterized by
two distinct regions, an outer wind launched beyond four white dwarf radii from the rotation axis and
an inner wind launched within this radius. The inner wind is very steep, up to 80¡ with the disk plane,
while the outer wind has a typical tilt of 60¡. In both cases, the wind cone dispersion is small because of
a good alignment between the wind and the radiative Ñux vectors from the disk. We, therefore, provide
an insight into the formation of the biconical geometry of disk winds as suggested by observations and
kinematical modeling. The wind collimation angle appears to be robust and depends on the disk tem-
perature stratiÐcation only. The Ñow critical points lie high above the disk for the inner wind but close
to the disk photosphere for the outer wind. Comparison with existing kinematical and dynamical models
is provided. Mass-loss rates from the disk as well as wind velocity laws are discussed in the second paper
in this series.
Subject headings : accretion, accretion disks È novae, cataclysmic variables È stars : mass loss È

stars : winds, outÑows

1. INTRODUCTION

Accretion disks are ubiquitous in astrophysical systems
ranging from newborn stars to compact objects, such as
white dwarfs, neutron stars and black holes, both stellar
and galactic. Because of their high temperatures and large
surface areas, disks appear to be among the most luminous
objects in the universe. Strong dissipative processes that
accompany accretion around compact objects can release
radiation energy in and above the disk, leading naturally to
radiation-driven winds, similar to winds from hot stars.
Observational signatures of such winds have been unam-
biguously detected in cataclysmic variables (CVs) (Heap et
al. 1978 ; Krautter et al. 1981 ; Klare et al. 1982 ; &Co� rdova
Mason 1982) and in active galactic nuclei (hereafter AGNs;
Arav, Shlosman, & Weymann 1997, and references therein),
but understanding them proved to be challenging. In this
and the following paper (Feldmeier, Shlosman, & Vitello
1999, hereafter Paper II), we focus on di†erent aspects of
disk winds in CVs, such as their two-dimensional geometry,
solution topology, mass-loss rates, and velocity proÐles.
AGN disk winds will be discussed elsewhere.

Theoretical understanding of winds from accretion disks
is hampered by their intrinsically multidimensional charac-
ter and by the richness of various physical processes supple-
menting the basic hydrodynamics of the Ñow. A number of
di†erent driving mechanisms for disk winds have been pre-
dicted and analyzed, from magnetic torques to X-ray disk
irradiation (i.e., Compton-heated and thermally driven
winds) to resonance line pressure (e.g., Blandford & Payne
1982 ; Begelman, McKee, & Shields 1983 ; &Co� rdova
Mason 1985 ; Woods et al. 1996). Disks in nonmagnetic CVs
with high accretion rates, yr~1, have an energyZ10~9 M

_output that peaks in the (far-) ultraviolet, similarly to O, B,
and WR stars. Their spectra exhibit features which bear
similarity to those found in hot and massive stars and which

are attributed to winds driven by radiation pressure in reso-
nance and subordinate lines of abundant chemical elements,
i.e., so-called line-driven winds (LDWs). Observational evi-
dence in favor of LDWs from hot stars and disks includes
but is not limited to the P Cygni line proÐles of C IV, N V

and Si IV, ionization levels, high terminal velocities and
their correlation with the luminosity, and UV line behavior
during continuum eclipse in CVs.

The pioneering work by Lucy & Solomon (1970), Castor
(1974), and Castor, Abbott, & Klein (1975, hereafter CAK)
showed that O star winds result from scattering of radiation
in the resonance lines of abundant elements. The elegantly
formulated theory of the LDWs from O stars by CAK,
Cassinelli (1979), Abbott (1980, 1982), Pauldrach, Puls, &
Kudritzki (1986), and others (for a textbook account, see
Lamers & Cassinelli 1999) was successfully applied to indi-
vidual objects. Further reÐnements of this theory by
Owocki & Rybicki (1984, 1985) and Owocki, Castor, &
Rybicki (1988) addressed the issue of stability of the Ñow.

First application of the LDWs to accretion disks empha-
sized the nonspherical ionizing continuum and driving force
as well as a biconical geometry of the outÑow (Shlosman,
Vitello, & Shaviv 1985 ; Vitello & Shlosman 1988). Under a
broad range of conditions, disk atmospheres in CVs and
AGNs become dynamically unstable because the line
opacity e†ectively brings them into a super-Eddington
regime. Continuum photons absorbed by the UV resonance
lines and reemitted isotropically contribute to the momen-
tum transfer to the wind. This process can be described as a
resonant scattering that conserves the number of photons
throughout the wind and results in terminal wind velocities
of the order of the escape speed at the base of the Ñow.

The dynamics and radiation Ðeld of disk LDWs
employed by Shlosman et al. (1985) and by Vitello & Shlos-
man (1988) were oversimpliÐed. Both were approximated
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by a one-dimensional planar model allowing for divergence
of the Ñow streamlines and geometrical dilution of the radi-
ation Ðeld. Nineteen resonance lines in the range of 500È
1600 were included in the calculation of the radiationA�
force. It was noted that disk LDWs are more restrictive
than stellar winds and that their development is strongly
governed by the ionization structure in the wind.

Subsequently, a variety of two-dimensional kinematical
models for disk winds in CVs, supplemented by a three-
dimensional radiation transfer in the Sobolev approx-
imation, were explored (Shlosman & Vitello 1993 ; Vitello &
Shlosman 1993). Calculations using an alternative Monte
Carlo radiation transfer method, albeit with frozen-in ion-
ization, gave similar results (Knigge, Woods, & Drew 1995).
Constrained by synthetic line proÐles and by calculated
e†ects of varying basic physical parameters, such as accre-
tion and mass-loss rates, temperature of the boundary layer,
rotation, and inclination angle, the available phase space for
wind solutions was sharply reduced. Wind-resonant scat-
tering regions exhibiting a strongly biconical character
regardless of the assumed velocity and radiation Ðelds were
identiÐed and mapped. This allowed us to match the
observed line shapes from a number of CVs and to put
forward a number of predictions, which were veriÐed in
high-resolution HST observations (Shlosman, Vitello, &
Mauche 1996 ; Mauche et al. 1999). Most important, rota-
tion was positively identiÐed as the dominant factor
shaping the UV line proÐles in CVs, thus conÐrming that
the disk and not the white dwarf is the wind source.

The above one-dimensional dynamical and two-
dimensional kinematical modelings su†ered from unique-
ness problems that can be removed only by invoking the
two-dimensional wind dynamics. Recent successful
attempts by Proga, Stone, & Drew (1998 ; hereafter PSD) to
model the two-dimensional time-dependent radiation
hydrodynamics of disk LDWs was a major breakthrough in
our understanding of this phenomenon. PSD basically con-
Ðrmed that kinematical models of disk winds had sampled
the correct parameter range and provided the scaling laws
between di†erent wind characteristics, e.g., between mass-
loss rate and accretion luminosity, and delineated the phase
space for possible time-dependent solutions. A number of
empirical relationships were put forward which require a
physical explanation.

In this paper, we focus on the two-dimensional geometry
of a disk LDW in the presence of a realistic radiation Ðeld in
CVs. We analyze solutions of the wind Euler equation,
emphasizing di†erences in the solution topology with that
of CAK stellar winds. In Paper II, we address issues related
to the mass-loss rates and velocity laws of CV winds. The
possible contribution to wind driving by magnetic stresses
is ignored (e.g., Blandford & Payne 1982 ; Pudritz &
Norman 1986 ; Emmering, Blandford, & Shlosman 1992), as
are jetlike outÑows seen in other disk systems (Livio 1997).

This paper is organized as follows. Section 2 reviews the
relevant aspects of CAK theory for LDWs from O stars.
Section 3 addresses the two-dimensional geometry of disk
LDWs, as well as the radiation Ðeld above the CV disk.
Section 4 deals with an analytic solution for vertical winds
above an isothermal disk, and ° 5 analyzes the solution
topology and Ñow geometry for tilted winds above a disk
with a realistic temperature stratiÐcation. Section 6 com-
pares our results with other models and observations,
and ° 7 summarizes our basic conclusions.

2. CAK THEORY FOR O STARS

2.1. T he Stellar L ine Force
The CAK theory for LDWs from O stars forms the basis

for our model of CV winds and is therefore brieÑy sum-
marized here. CAK assume a line-distribution function per
unit l and i, from UV to IR,

N(l, i)\ 1
l

1
i0

Ai0
i
B2~a

, (1)

where l is the line frequency and i (in cm2 g~1) is the mass
absorption coefficient normalized to which refersi0,roughly to the strongest driving line in the Ñow (Owocki et
al. 1988). For the power exponent, 0 \ a \ 1 holds, where
the lower limit corresponds to purely optically thin lines
and the (unrealistic) upper limit to purely optically thick
lines. Puls, Springmann, & Lennon (1999) derive froma \ 23KramersÏs formula applied to resonance lines of hydrogenic
ions. Similar values of a are obtained from detailed
non-LTE calculations for dense O-supergiant winds
(Pauldrach 1987 ; Pauldrach et al. 1994). On the other hand,
for low-density winds, e.g., from B stars near the main
sequence, may be more appropriate (Puls, Spring-a \ 12mann, & Owocki 1998). Therefore, we shall consider both
cases and to study the e†ect of a on the struc-a \ 12 a \ 23ture of disk winds.

Using equation (1), the CAK force from all lines can be
written in a general way that is applicable for both geome-
tries (e.g., Owocki & Puls 1996),

g
L
\ i0 vth

!(a)
1 [ a

1
c2
P

du Ic cü qc~a , (2)

by means of the Sobolev approximation (Sobolev 1957).
!(a) is the complete gamma function, c is the speed of light,
du is the solid angle centered on and is the frequency-cü , Icintegrated intensity in this direction. The line optical depth
in direction is given bycü

qc \ i0 vth o
cü Æ +(cü Æ v)

, (3)

with gas density o, and being the gradient alongcü Æ $(cü Æ v) cü
of the velocity component in direction Note that iscü . i0 vthindependent of the ion thermal speed and so is the linevthforce. Assuming spherical symmetry, and adopting the
““ radial streaming ÏÏ approximation of CAK, i.e., qc 4 q

r
,

equation (2) simpliÐes to

g
L
\ (i0 vth)1~a

!(a)
1 [ a

F
c2
Adv/dr

o
Ba

, (4)

with frequency-integrated, radial Ñux F.

2.2. Stellar Euler Equation
For an isothermal, spherically symmetric stellar wind, the

stationary Euler equation in dimensionless form can be
written as

A
1 [ A2

W
B
W @\ [1 [ 4A2

U
] EW @a , (5)

where, after CAK, we introduced a radial coordinate U \
with being the stellar radius. The sound speed,[R

*
/r, R

*A, and the Ñow speed, V \ W 1@2, are normalized to the
photospheric escape speed from the reduced stellar mass,
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M(1 [ !), where ! is the Eddington factor. The normalized
wind acceleration is given by W @\ dW /dU \ r2vv@/
GM(1 [ !), with v the Ñow speed and v@\ dv/dr. Note (1)
the di†erent meaning of the prime in W @ and v@ and (2) that
the gravitational acceleration is normalized to [1, whereas
CAK normalize it to The constant E in equation (5) is[12.given by

E\ !(a)
1 [ a

C i0 vth
4nGM(1 [ !)

D1~a L /c2
M0 a

, (6)

where G is the gravitational constant, L is the stellar lumi-
nosity, and is the mass-loss rate, GlobalM0 M0 \ 4nr2ov.
solutions to equation (5) exist only above a certain, critical

called an eigenvalue of the problem, i.e., below aEcr,maximum allowable mass-loss rate. In the zero sound speed
limit, A\ 0, the di†erential equation (5) separates into an
algebraic equation,

P4 W @] 1 [ EW @a\ 0 , (7)

and a trivial di†erential equation W @\ const, which leads
to the CAK velocity law, where isv(r)\ v=(1 [ R

*
/r)1@2, v=the Ñow terminal velocity. The Euler equation in the form

given in equation (7) is particularly simple and its terms
have a straightforward physical meaning, namely, inertia,
gravity, and line force.

2.3. T he Stellar W ind Topology : Critical Point of the Flow
We now consider solutions to equation (5) with Ðnite A.

According to CAK, for sufficiently large values of E, there
are two solutions in the supersonic regime, W [ A2, termed
““ shallow ÏÏ (small W @) and ““ steep ÏÏ (large W @) solutions ;
whereas in the subsonic, photospheric regime, W \ A2,
only the shallow solutions exist. On the other hand, only
the steep solutions reach inÐnity. Namely, the term
[ 4A2/U (the thermal pressure force caused by geometrical
expansion) becomes inÐnite for r ] O and must be bal-
anced by W @] O along the branch of steep solutions. CAK
concluded, therefore, that the true, unique wind solution
has to switch from the shallow to the steep branch at a
““ critical ÏÏ point (see Fig. 1). Of course, a nonzero pressure
term at inÐnity is unphysical because it requires an inÐnite
amount of energy in the Ñow and is purely a result of the
imposed isothermal conditions in the wind.

We Ðnd that shallow solutions can always be extended to
inÐnity, if one allows for a kink in the velocity law at large
radii. At this kink, the wind switches to the branch of decel-
erating solutions, W @\ 0. The latter are found after repla-
cing W @a in the line force by oW @ oa. Since stellar winds
essentially reach at a few 100 the kink and sub-v= R

*
,

sequent deceleration hardly show up. For disk winds, the
kink can be more pronounced ; this is discussed further in
Appendix B.

The subsonic region has an extent of a few percent of the
stellar radius for O-star winds, while the pressure force
[4A2/U becomes important only beyond a few 100 InR

*
.

the intermediate regime, i.e., almost everywhere, the simpli-
Ðed equation (7) with A\ 0 holds to a good approximation,
and therefore W @\ const. This happens because both
gravity and line force are Pr~2. Solution curves in the
(W @, U)-plane are essentially straight lines, but the lines
bend over because of thermal pressure both at U \ [1 and
0. As a result, the critical point is a saddle point in the

(W @, U)-plane (Bjorkman 1995). The usual deÐnition of a
critical point in hydrodynamics refers, however, to the
(W , U)-plane (a topologically equivalent plane).

For A\ 0, the critical point lies on an extended ridge,
and its position becomes ill-deÐned (Fig. 1a). In this limit,
every point of the critical solution is a critical point. For
A[ 0, however, CAK Ðnd the critical point to lie at rcr \(Fig. 1b). Inclusion of further correction terms to the3/2R

*line force, especially owing to the Ðnite size of the stellar
disk, breaks the r~2 dependence of the line force, pushes the
two almost degenerate critical solutions W @(U) apart, and
shifts the critical point toward the sonic point (Fig. 1c).
Pauldrach et al. (1986) Ðnd then rcr[ 1.1R

*
.

A critical point is the information barrier for LDWs and
plays a role similar to the sonic point in thermal winds or
nozzle Ñows (Abbott 1980). How can the pressure mismatch
of a shallow solution at be communicatedr Z 300R

*upstream to the critical point at We speculate that it1.1R
*
?

is not really the outer boundary mismatch that forces the
Ñow through a critical point. Instead, the truly dis-
tinguishing property of the critical solution should be its
correspondence to the maximum mass-loss rate in the wind.
Work is underway to identify the feedback mechanism
between the wind and the photosphere that drives the wind
from any shallow solution to the unique critical solution.
This issue will be addressed elsewhere. In the present paper,
we assume that the true disk wind solution is the one with
the maximal allowable mass-loss rate.

The Ñow critical point (subscript ““ cr ÏÏ) is deÐned by the
singularity condition, (i.e., the merging of aLP/LW cr@ \ 0
shallow and a steep solution). Together with the Euler
equation, P\ 0, this implies

W cr@ \ a
1 [ a

, (8a)

Ecr\
1

aa(1 [ a)1~a
. (8b)

The eigenvalue determines the maximum mass-loss rate,Ecrand determines the terminal speed. They are discussedW cr@further in Paper II. Furthermore, from the Euler equation,
dP/dU \ 0 must hold everywhere. This leads to the regu-
larity condition, (ifLP/LUcr] W cr@ LP/LWcr\ 0 W cr@@ \ O),
which determines the position of the critical point.

3. DISK WIND GEOMETRY AND RADIATION FIELD IN CVs

3.1. Flow Geometry, Gravity, and Centrifugal Force
The central assumption throughout this paper is that the

helical streamline of a Ñuid parcel in the wind is contained
within a straight cone. While this is certainly an ideal-
ization, and a major restriction of this model, justiÐcation
comes Ðrst from the related kinematical model of Shlosman
& Vitello (1993) and second from the numerical two-
dimensional hydrodynamic simulations of PSD. The latter
showed that the escaping mass loss carrying streamlines are
well approximated by straight lines in the (r, z)-plane, with r
and z being cylindrical coordinates. The rotational speed
and the centrifugal forces in the wind depend on the cone
opening angle that is calculated self-consistently here. The
angular momentum is preserved along any streamline (see
below) and, therefore, does not depend on its shape.
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FIG. 1.ÈSaddle-point topology of stellar CAK winds in the (W @, U)-plane, for (a) a point star and zero sound speed ; (b) a point star and Ðnite sound
speed ; (c) an extended star and Ðnite sound speed. Filled dots mark the sonic points (at U ^ [1) and the critical points.

We denote the angle between the wind cone and the
radial direction in the disk plane by j. This angle is calcu-
lated using the Euler equation and is not assumed a priori.
The footpoint radius of a streamline in the disk is and xr0,is the distance along the cone (see Fig. 2). We search for the
solutions of the Euler equation in the for a[j(r0), x]-plane
streamline starting at arbitrary The dependencer0. j(r0)leads to the appearance of a new eigenvalue problem for the
disk wind, and derivation of this function is the focus of the
present paper.

Since LDWs are highly supersonic, we neglect the pres-
sure forces and furthermore assume that the azimuthal
velocity is determined by angular momentum conservation
above the disk and by Keplerian rotation in the disk plane.
The tilt angle j has to be a monotonically decreasing func-
tion of to avoid streamline crossing, which would violater0the assumption of a pressure-free gas. The only remaining
velocity component is which points upward along thev

x
,

cone. The dynamical problem has therefore been reduced to
solving the Euler equation for v

x
.

In a frame rotating with the angular velocity X of a Ñuid
parcel positioned at radius vector s, there are three Ðctitious
forces (e.g., Binney & Tremaine 1987, p. 664). The Coriolis
acceleration, [2 has no component along and theX Â s5 , xü ,
same is true for the inertial force of rotation, [ WeX0 Â s.
introduce the e†ective gravity function, which is the com-
ponent of gravity minus centrifugal force along the straight
line in direction and is given by g(X, j), withxü , [(GMwd/r02)being the mass of the white dwarf, andMwd

g(X, j)\ X ] cos j
(1 ] 2X cos j ] X2)3@2[ cos j

(1 ] X cos j)3 , (9)

where In the following, all lengths written inX 4 x/r0.capital letters are normalized to the footpoint radius, inr0,the disk. For disk winds, the variable X will play the role U
played for stellar winds (cf. eq. [5]). Close to the disk,
X > 1, and g ^ X, while for X ? 1, g ^ X~2. For a vertical

FIG. 2.ÈAdopted Ñow geometry for a CV disk wind. Streamlines are
helical lines and are assumed to lie on straight cones.

ray, j \ 90¡, g has its maximum at while for aX \ 1/J2,
horizontal ray, j \ 0, the maximum is at X \ 12.

Equation (9) shows an important di†erence between
stellar and disk winds. The stellar gravity is always decreas-
ing with distance, while for the disk an e†ective gravity
““ hill ÏÏ must be overcome before the wind can escape. This
e†ect of disk LDWs will be discussed in ° 5.

3.2. Radiation Field above the Disk
Next, we evaluate the line force in equation (2). Besides

the initial growth of e†ective gravity with height, the
opacity-weighted Ñux integral is the central property that
distinguishes disk winds from stellar winds. Pereyra,
Kallman, & Blondin (1997) give an analytical approx-
imation for this integral above an isothermal disk. Unfor-
tunately, an error was introduced with a change of
integration variable, which led to an artiÐcial, linear depen-
dence of the vertical Ñux on z, even as z] 0. PSD solve this
integral numerically (cf. Icke 1980), using approximately
2000 Gaussian integration points.

In the general spirit of the radial streaming approx-
imation of CAK, we replace the integral in equation (2) by

thus introducing an equivalent optical depth, Weq6 ~aF, q6 .
Ðrst calculate the frequency-integrated Ñux dF(r, z) at a
location (r, z) in cylindrical coordinates, from a Ñat ring of
radius q, radial width dq, and isotropic intensity I(q, 0),

dF(r, z)\
AdF

r
dF

z

B
\ 2nI(q, 0)q dq

z
B3@2

Ar[r2] z2[ q2]
z[r2 ] z2] q2]

B
,

(10)

where

B\ (r2 ] z2[ q2)2] 4z2q2 . (11)

For an isothermal disk with isotropic intensity, we integrate
equation (10) over q, to obtain the disk Ñux

F(r, z)\ nI
2

1

JB

A[z/r][r2] z2] q2]
[r2[ z2] q2

B K
q/rwd

rd
, (12)

where is the outer disk radius. For the nonmagneticr
dsystems considered here, we identify the inner disk radius

with the white dwarf radius. We do not include contri-rwd,butions to the radiative Ñux from the white dwarf and the
boundary layer. Generally, of course, accretion disks are
not isothermal. We, therefore, consider two complementary
cases with (termed ““Newtonian ÏÏ disk in whatT (r0)P r0~1@2
follows) and (Shakura &T (r0)P r0~3@4[1 [ (rwd/r0)1@2]1@4Sunyaev 1973 ; hereafter SHS). Observations show that the
brightness temperature stratiÐcation of CV disks is consis-
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FIG. 3.ÈIsocontours of the frequency-integrated, vertical Ñux com-
ponent above a Newtonian disk. The disk extends from 1 toF

z
30rwd.Normalization is I(r0\ 5rwd, z\ 0)\ 1.

tent with both distributions (Horne & Stiening 1985 ; Horne
& Cook 1985 ; Rutten et al. 1993).

For the Newtonian disk, we Ðnd

F(r, z)\ nI(r, 0)r2 z
r2] z2

]a
3r2[ z2[ q2

2rJB
[ r

z2 ] r2
ln C

3z2[ r2] q2
2zJB

[ z

z2 ] r2
ln Cb ,

trd
t

t

t

t

t
q/rwd

(13)

FIG. 4.ÈSame as Fig. 3 (including normalization), now for the radial
Ñux component Dotted lines indicate an inward Ñux.F

r
.

FIG. 5.ÈNormalized, projected Ñux for SHS (a) and Newto-F3
x
(r0, X)

nian (b) disks, at footpoint radii 10, 5, and (top to bottomr0\ 20, 2rwdcurves). The tilt angle with the disk plane is 90¡ for full lines and 60¡ for
dashed lines.

where

C\ (z2[ r2)q2] (z2] r2)2] (z2] r2)JB
q2 . (14)

The surface Ñux above the SHS disk can only be inte-
grated numerically, using equation (10). Yet, this has the
advantage that can be introduced for each ring individ-q6
ually. More speciÐcally, is calculated along the Ñux direc-q6
tion of a given ring at the position of the wind parcel. If the
Ñux in equation (13) is used instead, is calculated along theq6
disk Ñux direction. Typical di†erences in the resulting value
for the tilt angle (see below) are 5¡È10¡ for the twojcrapproaches. Corrections owing to the q~a weighting in the
azimuthal integral are even smaller.

Figures 3 and 4 show isocontours for the z- and r-
components of the Ñux in equation (13) above the Newto-
nian disk. For sufficiently large tilt angles, the Ñux along the
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streamlines has a maximum larger than 0) at some X.nI(r0,This is caused by the increasing visibility of the inner, hot
disk regions. We denote this regime, where the Ñux has a
maximum, the ““ panoramic ÏÏ regime, to be distinguished
from the planar ““ disk ÏÏ regime, where and the ““ farF

z
^ nI,

Ðeld ÏÏ regime, where FP X~2.
We introduce the normalized Ñux, F3 (r, z)\

F(r, z) along a streamline, which is independent of/nI(r0, 0),
disk luminosity. To quantify the Ñux increase above the
disk, Figure 5 shows the projected, normalized Ñux F3

x
\

as function of X, for di†erent footpoint radii and forxü Æ F3 r0both types of nonisothermal disks. Note that the initial
increase of with X caused by the windÏs exposure to theF3

xcentral disk region is rather mild, a factor of a few only,
because the central region has a small area. In ° 5 we discuss
how the maximum in controls the base extent of theF3

xwind above the disk, as well as the height of the wind critical
point.

In deriving the above Ñuxes, the intensity was assumed to
be isotropic. Using instead the Eddington limb darkening
law, with polar angle h, the ver-Ih \ 2/5I0[1 ] (3/2) cos h],
tical Ñux in the planar disk regime above an isothermal disk
becomes larger by a factor of 8/7, i.e., limb darkening should
not signiÐcantly a†ect the wind properties. However, limb
darkening can be more important in the UV spectral regime
because of the Wien part of the spectrum, and the correc-
tion factors could become somewhat larger there (Diaz,
Wade, & Hubeny 1996).

4. VERTICAL WIND ABOVE AN ISOTHERMAL DISK

As an analytically tractable case, we consider Ðrst a verti-
cal (or cylindrical) wind with j \ 90¡, or above anxü \ zü ,
inÐnite, isothermal disk with Ñux We again adoptF \ nIzü .
the ““ radial streaming ÏÏ approximation in equation (2), i.e.,

Note that has no contributions from either azi-q6 \ q
z
. q

zmuthal velocity gradients, or from geometricalLvÕ/Lr,
expansion terms, the latter describing photon escapePvÕ,along the tangent to the helical streamline.

The density o that enters q is replaced by introducing the
mass-loss rate from one side of a disk annulus, SincedM0 .
the mass that streams upward between two cylinders is con-
served,

dM0 (r0)\ 2nr0 dr0 v
x
(r0, x)o(r0, x) . (15)

For simplicity, we apply the zero sound speed limit, A\ 0,
for the rest of this paper and neglect the force caused by
electron scattering because of small ! above the geometri-
cally thin disk. The Euler equation becomes

0 \ P(W @, X)\ W @] g [ EW @a , (16)

where g \ X/(1 ] X2)3@2 for j \ 90¡, and W @\ dW /
dX \ 2V dV /dX. Here and V is the Ñowd/dX \ r0 d/dx,
speed along X, normalized to the local escape speed at the
footpoint on the disk. Note the di†erence in the deÐnitionr0of W @ as compared with that for stellar winds (cf. eq. [5]).
Also, normalizing the velocity V instead to the escape speed
from the white dwarf leads to unwanted, explicit appear-
ances of in the Euler equation. The constant for ar0 E(r0)streamline starting at on the disk is deÐned as (cf. eq. [6])r0

E(r0)\
!(a)
1 [ a

A i0 vth
2nG Mwd

B1~a 2nr02F
z
(r0, z\ 0)/c2

(r0 dM0 (r0)/dr0)a
. (17)

Similarly to the stellar case, equation (16) for the disk
wind has global solutions only above a critical value Ecr,the eigenvalue of the problem, i.e., below a maximum allow-
able mass-loss rate. Unlike the point star case, however, P
in equation (16) is a function of X even when A\ 0. As a
result, the degeneracy in the position of the critical point
does not exist here, and one has a well-deÐned critical point,
irrespective of A.

There exists an additional di†erence between the stellar
and disk LDWs. In Figure 1c, the Ðnite cone correction
factor causes the critical point in the stellar wind to move
upstream, and, for vanishing sound speed, both the critical
point and the sonic point are found in the stellar photo-
sphere. For the disk case, however, only the sonic point falls
toward the photosphere, whereas the critical point stays at
Ðnite height. Namely, from the regularity condition
LP/LX \ 0 (P does not depend on W ), the critical point of
the disk wind lies at the location of maximal gravity, at
Xcr \ 1/21@2.

This explains why Vitello & Shlosman (1988) Ðnd no
critical point in the disk regime, X > 1, for a vertical wind
with constant ionization. The variable wind ionization
introduces additional gradients into the driving force, shift-
ing the critical point toward the disk photosphere. For the
solution discussed here, vertical ionization gradients are not
mandatory.

Additional justiÐcation that the critical solution is the
true wind solution comes from the fact that only the shallow
solutions connect to the photosphere. However, terminal
speeds of the shallow solutions are much smaller than the
white dwarf escape speed, in sharp contrast to observed CV
winds. The solution we are searching for should, therefore,
switch to the steep branch (with large at a critical point,v=)
i.e., there should be the solution of maximum mass-loss rate.

The conditions P\ 0 and LP/LW @\ 0 lead to

W cr@ \ a
1 [ a

gcr , (18a)

Ecr\
1

aa(1 [ a)1~a
gcr1~a , (18b)

where This deÐnes the wind solution ofgcr\ 2/(3] 31@2).
maximum allowable mass-loss rate. The e†ective gravity
hill imposes a ““ bottleneck ÏÏ on the Ñow, i.e., the maximum
of g(X) deÐnes the minimum, constant eigenvalue or theEcr,maximum allowable for the critical solution whichM0 ,
extends from the disk photosphere to large X. Larger values
of E correspond to shallow solutions and, hence, to smaller
mass-loss rates. Smaller values of E correspond to stalling
wind solutions, which become imaginary around the loca-
tion of the gravity maximum. Note that in equationEcr(18b) is independent of in accordance with equation (16).r0,

5. TILTED DISK WINDS

With all prerequisites at hand, we can now solve the
general eigenvalue problem for a tilted wind above a non-
isothermal disk. The density o in equation (3) is replaced by
the conserved mass-loss rate between two wind cones,

dM0 (r0)\ 2nr0 dr0 (1 ] X cos j)

]
C
1 [ Xr0 (dj/dr0)

sin j
D

sin jv
x
(r0, x)o(r0, x) . (19)
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The term (1 ] X cos j) describes the density drop caused
by the increasing radius of the cone, and [1[ Xr0describes the density drop caused by the geo-(dj/dr0)/sin j]
metrical divergence of neighboring cones. The factor sin j
stems from the quenching of the Ñow at small j.

5.1. Disk Euler Equation
The geometrical expansion term in the directional+cü

derivative has contributions from the azimuthalcü Æ $(cü Æ v)
curvature of helical streamlines and from the cone diver-
gence Close to the disk, where the mass-loss rate ofdj/dr0.the wind is established, both contributions are small. For
azimuthal curvature terms, this is shown in Appendix A.
With regard to cone divergence, the argument is a poste-
riori, i.e., we Ðnd below that is small. Two neighbor-dj/dr0ing wind rays launched at, e.g., intersect at ar0D 5rwdnormalized distance below the disk. Generally,X

i
D [10

is larger by a factor of 10 than the distance betweenX
i

Xcr,the disk and the critical point. By analogy with spherically
symmetric stellar winds, where cü Æ $(cü É rü v

r
)\k2 dv

r
/dr]

with the geometrical expansion term(1[ k2)v
r
/r, k \ cü Æ rü ,

for disk winds should bePv
x
$(cü Æ xü ) Pv

x
/[r0(X[ X

i
)].

Whereas the geometrical expansion term for O-star winds,
is of the same order as the gradient term,(1[ k2)v

r
/r,
it is much smaller than the latter for disk winds.k2dv

r
/dr,

On the other hand, far from the disk, the expansion term
may become important. However, we Ðnd from solving the
Euler equation that it has only a marginal inÑuence on the
terminal wind velocity. Furthermore, azimuthal terms for
helical streamlines are unimportant far from the disk, where
the wind is essentially radial. We, therefore, neglect all geo-
metrical expansion terms in the following. Appendix A also
shows that gradients in the azimuthal velocity can be
neglected in the line force. Finally, we assume that the gra-
dient of points in the This is a reasonablev

x
xü -direction.

assumption since the velocity gradients develop roughly in
the Ñux direction, as is shown below. The normalized Euler
equation for a conical disk wind, and for vanishing sound
speed, is then

0 \ P(W @, X)\ W @] g [ E fW @a , (20)

with auxiliary function f,

f (r0, X)4
C
(1]X cos j)

A
sin j[Xr0

dj
dr0

BDaP
rwd

rd
dF3 k1`2a .

(21)

Here, (see eq. [10]), and k is the cosine of thedF3 \ o dF3 o
angle between and the wind cone. Again, W @\ 2VdF3
dV /dX, where the velocity V is normalized to the local
escape speed ; is deÐned in equation (17). Note that theE(r0)Ñux integral in equation (21) introduces a further depen-
dence of f on Furthermore, because of the weighting withr0.k2a in the integral, the disk Ñux vector and the wind cone
generally do not point in the same direction. For disk winds
as considered here, good alignment between radiative Ñux
and wind Ñow is expected, however. In cases where such an
alignment is not possible, e.g., for atmospheres irradiated
from above, ablation winds at large tilt angle with the radi-
ative Ñux were recently suggested (Gayley, Owocki, &
Cranmer 1999).

5.2. W ind T ilt Angle as an Eigenvalue and
Solution Topology

The critical-point conditions for a speciÐc streamline are,
from equation (20)

W cr@ \ a
1 [ a

gcr , (22a)

Ecr\
1

aa(1 [ a)1~a
gcr1~a
fcr

, (22b)

0 \ (1 [ a)
gcr@
gcr

[ f cr@
fcr

, (22c)

where g@\ Lg/LX and f @\ Lf/LX. The tilted disk wind is
essentially a two-dimensional phenomenon; hence, we
expect two eigenvalues of the Euler equation with respect to
E and j. Finding the critical solution of maximum mass loss
at a given footpoint implies minimizing E in equationr0(22b) with respect to the position of the ““ critical ÏÏ point

We show now that is a saddle point of(Xcr, jcr). (Xcr, jcr)g1~a/f. We consider Ðrst the X coordinate and recall from
the analysis of the vertical disk wind that the maximum of
g1~a has determined the eigenvalue From equationEcr.(22b), the relevant function now is g1~a/f. This means that
the maximum of g1~a/f with respect to X for a Ðxed j serves
as a bottleneck of the Ñow, i.e., the most stringent condition
on the wind between the photosphere and inÐnity. There-
fore, it deÐnes the maximum allowable mass-loss rate. Next,
we analyze the mass-loss rate along a streamline by varying
its tilt angle j. To obtain the maximum mass-loss rate, we
look for the minimum of g1~a/f as a function of j. This
particular plays the role of a second eigenvalue of thejcrEuler equation, besides Note that because of the depen-Ecr.dency of f on the wind tilt will change with Ther0, r0.eigenvalue is thus given byEcr

Ecr \
1

aa(1 [ a)1~a
min
j

max
X

g1~a
f

. (23)

This is the deÐnition of a saddle point of g1~a/f. Isocontours
of this function are shown in Figure 6 for the SHS disk. The
existence of the saddle point in g1~a/f underlines the two-
dimensional nature of disk LDWs. Because the saddle
opens in the X-direction, the wind escapes to large X.

Furthermore, the critical solution of maximum mass loss
passes also through a saddle point of the Euler function P in
the (W @, X)-plane, in complete analogy with O-star winds.
(It may be an interesting task to consider the solution topol-
ogy in the three-dimensional space spanned by [j, X, W @].)
The regularity condition, equation (22c), determines the loci

of these critical points, as shown by the heavy lines inXcrFigure 6. On the left branch of these curves, which also pass
through the saddle point of g1~a/f (if the latter exists), lie
critical points of the saddle- or X-type. Here, W @(X) can
switch from a shallow (small W @) to a steep (large W @) solu-
tion. On the other hand, the right branch of the regularity
curves, which pass through the minimum of g1~a/f, consists
of critical points of the focal type (Holzer 1977 ; Mihalas &
Mihalas 1984). They correspond to solutions that do not
extend from the disk photosphere to large radii and are
ignored in our discussion.

Figure 7 shows a good overall alignment of the wind ray
of maximum mass-loss rate with the radiative Ñux vector
from the disk, at least up to the critical point. This is (1)
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FIG. 6.ÈIsocontours of g1~a/f, normalized to [2/(3 ] 31@2)]1~a, over the (X, j)-plane. Footpoints of the wind are at 5, and 15 respectively (leftr0\ 3, rwd,to right panels). The isocontours have logarithmic spacing. The temperature stratiÐcation is that of the SHS disk with and was used. Heavyr
d
\ 30rwd, a \ 23lines are solutions to the regularity condition in eq. (22c).

because the eigenvalue depends linearly on f, but onlyEcrwith a small power of 1 [ a on g, and (2) because only f (j)
has a maximum, whereas g(j) falls o† monotonically.

The Ðgure suggests that the wind should actually be
launched vertically from the disk surface and then later
bend over because of the increasing radial Ñux component.
The latter is (mostly) caused by the radial temperature
stratiÐcation of the disk, with some number n.T P r0~n@4,
From a series expansion, one Ðnds for z>F

r
(z)P [nz ln z,

We expect streamline bending because of this initialr0.increase in to be more important than bending caused byF
rthe higher gas pressure at smaller radii (for a disk with

radial temperature fall-o†). Furthermore, streamline
bending caused by centrifugal forces occurs only on a much
larger length scale, Since the true bent trajectory isr0.expected to follow the Ñux vector rather closely, a some-
what larger mass-loss rate is expected than along straight
wind cones. However, the di†erence should be rather small.
A clear beneÐt from this approximation is a dramatically
reduced complexity of the wind treatment.

FIG. 7.ÈRadiative Ñux vector above the SHS disk with Ther
d
\ 30rwd.straight line indicates a wind cone at eigenvalue j \ 61¡ (cf. Table 1). The

plus sign marks the critical point.

5.3. Inner and Outer Disk W inds
Up to this point we ignored the possibility of multiple

saddle points of g1~a/f. We now address this issue. As
shown in Figure 6, for the function g1~a/f hasr0[ 4rwdonly one saddle at a large height, e.g., forXcr ^ 4.4 a \ 23.However, for a second saddle exists at smallerr0Z 4rwd,which lies on a di†erent branch of the regularity curve.Xcr,We name these two types of saddles the high and low
saddles, according to their height above the disk. TheXcre†ective gravity ““ hill ÏÏ separates the two saddle points.

From Figure 6, the low saddle corresponds to a larger
mass-loss rate than does the high saddle. For ther0Z 4rwd,solution of maximum mass loss is therefore determined by
the low saddle. For smaller however, only the highr0,saddle exists and determines the wind solution. These two
cases deÐne the outer and inner disk wind, respectively.
Clearly, the assumption of straight streamlines is a severe
one for the inner wind with high-lying critical points.

The tilt angle of the outer wind is around 60¡, namely
at and 55¡ at 20 This is largelyjcr\ 65¡ r0\ 4rwd, rwd.independent of a. For the inner wind, the tilt is larger, jcr\80¡ for and 70¡ for Furthermore, the criticala \ 23 a \ 12.

point, for the inner wind is much higher above the diskXcr,than the critical point for the outer wind. As mentioned
above, these critical points fall on the opposite slopes of the
e†ective gravity hill. For the outer disk wind, the position

of the critical point is moving closer to the wind sonicXcrpoint with increasing The reason for this is the largerr0.
gradient of the disk radiative Ñux in the x-direction for
larger As a result, the line force can balance gravity atr0.smaller X.

Figure 8 shows critical wind solutions W @(X) above the
SHS disk for di†erent The decelerating solutionr0.branches, W @\ 0, are discussed in Appendix B. The critical
point topology of Figure 8 may be compared with that of
the CAK stellar wind in Figure 1. (Note, that W @ has a
slightly di†erent deÐnition for the stellar and disk wind
cases.) From Figure 8, we can also derive a condition for the
existence of a stationary, outer wind solution, further clari-
fying the role of the e†ective gravity hill. The plus signs at
the critical points in the Ðgure indicate where the Euler
function P[ 0, i.e., where drag forces (gravity and inertia)
overcome the driving forces (line and centrifugal force) ; this
is correspondingly so for the minus signs. Hence,

at the low saddle, or, using equation (22a),L2P/LXcr2 \ 0
(22b), and (22c), (1 [ a) (respectively, ““[ ÏÏgcr@@ /gcr\ f cr@@ /fcr
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FIG. 8.ÈCritical wind solutions W @(X) at zero sound speed above the
SHS disk At high saddle ; at and(r

d
\ 30rwd, a \ 23). r0\ 3rwd : r0\ 5

low saddle. The branches W @\ 0 are decelerating wind solutions15rwd :
and are discussed in Appendix B. Plus and minus signs refer to the sign of
the Euler function P in eq. (20). For comparison with the critical-point
topology of a spherically symmetric, stellar wind, see Fig. 1.

at the high saddle). This means, the maximum of f must be
sufficiently broad to allow for a stationary solution with a
low saddle. The critical point for a vertical wind above an
inÐnite, isothermal disk, where f\ 1, corresponds to a low
saddle.

To understand the geometry of disk LDWs fully, we con-
sider also the transition region between the inner and outer
winds. As discussed above, the low saddle does not exist
below Figure 9 shows g1~a/f in the neighborhoodr0[ 4rwd.of this footpoint radius. At only the high saddler0\ 4rwd,exists and determines the wind solution. At anr0\ 4.03rwd,inner regularity curve of elliptical shape has formed but not
yet the low saddle point of g1~a/f. The mass-loss rate is
maximal at the smallest j along the curve, i.e., at its lower
tip, which determines the wind solution in this transition
regime. By a low saddle has formed atr0\ 4.15rwd, jcr \65¡. Going to larger the wind tilt stays (roughly) at thisr0,value which corresponds to the maximum mass-lossjcr,rate. In total, the wind tilt switches continuously from the
high to the low saddle over a narrow range of 0.1 in therwdfootpoint radius.

5.4. Overall Disk W ind Geometry
Table 1 lists important parameters of the wind above

SHS and Newtonian disks, i.e., the tilt angle, the nor-jcr,malized mass-loss rate from a disk annulus, and them5 cr,critical point location, The mass-loss rate is normal-Xcr. m5
ized to a vertical wind above an isothermal disk. The
shallow maxima of the function in Figure 5 areF3

xresponsible for Implications of these mass-lossm5 \O(1).
rates are discussed in Paper II. From the table, one Ðnds the
ray dispersion in the outer wind, at intermediate footpoint
radii 4È10 to berwd,

dj
dr0

^ [ 1¡
rwd

. (24)

Farther in or out, the ray dispersion is even smaller. Since
also enters the Euler equation (20), the full winddj/dr0problem can be solved only iteratively. However, the depen-

dence of the eigenvalues and on is weak, andEcr jcr dj/dr0we assume throughout that equation (24) holds.
The overall geometry of the disk wind is shown in Figure

10. For the critical points are at fora \ 23, xcrD 10È20 rwdthe inner wind, then move toward the disk photosphere and
stay at independent of footpoint radius in thexcr^ rwd, r0outer wind. For on the other hand, the critical pointsa \ 12,lie somewhat higher for the outer wind, at butxcr^ 2rwd,their location is again independent of radius While ther0.division into an inner and outer wind persists (namely high-
lying vs. low-lying saddle, or critical points on opposing

FIG. 9.ÈIsocontours of g1~a/f, normalized to from 0.855 to 0.885 in steps of 2 ] 10~3 at the low saddle ; from 1.05 to 1.15 in steps of 10~2 at(2/3J3)1~a ;
the high saddle. At 4.03, and respectively (left to right panels). Heavy lines are solutions to the regularity condition. Circles mark the criticalr0\ 4, 4.15rwd,wind solution of maximum mass-loss rate. Within the footpoint range from to the wind switches from to via a growingr0\ 4 4.15rwd, jcr \ 80¡ jcr\ 65¡
regularity curve of ellipsoidal shape.
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TABLE 1

TILT ANGLE NORMALIZED MASS-LOSS RATE AND POSITION OF THE CRITICAL POINT FORjcr, m5 cr, XcrDIFFERENT DISK WIND MODELS

SHS DISK NEWTONIAN DISK

a \ 23 a \ 12 a \ 23 a \ 12

r0/rwd jcr(¡) m5 cr Xcr jcr m5 cr Xcr jcr m5 cr Xcr jcr m5 cr Xcr
2 . . . . . . . 80 0.42 4.4 68 0.62 1.9 78 0.64 4.3 65 0.94 1.2
3 . . . . . . . 80 0.60 4.4 72 1.02 2.3 78 0.90 4.7 65 1.45 0.82
4 . . . . . . . 80 0.86 4.4 69 1.60 1.7 65 1.23 0.32 63 1.78 0.58
5 . . . . . . . 64 1.37 0.26 63 2.23 0.52 64 1.32 0.26 62 2.10 0.43
6 . . . . . . . 62 1.48 0.19 61 2.69 0.35 63 1.37 0.23 61 2.23 0.38
7 . . . . . . . 61 1.60 0.16 60 3.08 0.27 63 1.37 0.21 61 2.37 0.34
10 . . . . . . 58 1.82 0.11 58 3.84 0.18 62 1.48 0.17 60 2.69 0.28
15 . . . . . . 57 2.10 0.08 55 5.41 0.12 61 1.54 0.15 58 3.08 0.23
20 . . . . . . 56 2.26 0.06 53 6.57 0.10 60 1.60 0.13 58 3.31 0.2
25 . . . . . . 55 2.45 0.05 52 8.16 0.08 60 1.67 0.13 57 3.31 0.3
28 . . . . . . 55 2.59 0.04 51 8.16 0.10 58 1.35 0.2 57 2.44 0.2

NOTEÈ.Underlined numbers indicate the transition from the inner to the outer wind.

sides of the gravity hill), the transition in j between the two
regions is smooth for and the inner tilt reaches aa \ 12,
maximum of j \ 70¡ only.

The innermost disk region, from is left out of1È2rwd,Figure 10. The details of the disk wind and its very existence
here are subject to great uncertainties in the radiation Ðeld,
which depends on the properties of the transition layer and
the white dwarf itself. The outer boundary of the disk LDW,
on the other hand, is set by the radius where the disk tem-
perature falls below 104 K and UV line driving becomes
inefficient, in analogy with stellar winds (Abbott 1982 ;
Kudritzki et al. 1998). For the SHS disk with L

d
\ 10 L

_
,

this should happen around 30rwd.
6. DISCUSSION

Here we compare our theoretical model of LDWs from
accretion disks in CVs with those available in the literature,
both kinematical and dynamical models. We ignore the
radial wind models, with the white dwarf being the wind
base, because they are in a clear contradiction with current
observations (e.g., review by Mauche & Raymond 1997). An
alternative source of gas is the disk itself. Kinematical
models that account for this source of material subject to
the line-driving force successfully explained the observed
bipolarity of the outÑow and reproduced the inclination-

dependent line proÐles (Shlosman & Vitello 1993). Their
weak point was the absence of a unique solution. The one-
dimensional dynamical models in a simpliÐed disk radi-
ation Ðeld revealed some major di†erences between the
stellar and disk winds, e.g., the bipolarity and the existence
of a gravity hill (Vitello & Shlosman 1988).

More sophisticated two-dimensional kinematical models,
supplemented with a three-dimensional radiation transfer
in Sobolev approximation, showed the importance of
rotation in shaping the lines (Vitello & Shlosman 1993 ;
Shlosman et al. 1996). Finally, the two-dimensional hydro-
dynamical model of a disk wind in a realistic radiation Ðeld
and with the line-force parameterized by the CAK approx-
imation has addressed the issue of Ñow streamlines and
mass-loss rates in the wind (PSD). Our comparison, there-
fore, is focused on these models.

Vitello & Shlosman (1993) set up a kinematical disk wind
model assuming straight Ñow lines in order to Ðt the C IV P
Cygni line proÐles of three CVs observed with the IUE
satellite. The Ðt parameters included the inner and outer
terminating radius of the wind base and the corresponding
tilt angles of the wind cone. The best Ðt appeared to be
indi†erent to the mass-loss rate, within the range of 10~1 to
10~2 of the accretion rate. In the present work, which
accounts for wind dynamics, we Ðnd lower mass-loss rates

FIG. 10.ÈWind geometry above the SHS disk according to Table 1, for (left-hand panel) and (right-hand panel). Black regions(r
d
\ 30rwd) a \ 23 a \ 12indicate the accelerating LDW, and thin white lines show individual wind cones. Gray areas indicate decelerating wind (Appendix B) for a ray dispersion

““ I ÏÏ and ““O ÏÏ mark the inner and outer wind ; ““ T ÏÏ is the transition region. Heavy white lines are locations of Ñow critical points. Thedj/dr0\[1¡/rwd.innermost region of the disk, at is not treated because of uncertainties in the radiation Ðeld.r0\ 2rwd,
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more justiÐed and discuss various implications of these
rates on the wind models in Paper II. The tilt of the inner-
most wind cone in Vitello & Shlosman was rather steep,
j \ 80¡, while at the outer disk edge j \ 25¡. A similar
work by Knigge et al. (1995), but using Monte Carlo radi-
ation transfer in the wind, gave similar results. In the
present work, the tilt angle j is calculated self-consistently
from the Euler equation, resulting in a similar inner tilt as
found in kinematical models, while the outer tilt di†ers by a
factor of 2 between the two approaches.

The most advanced numerical modeling of CV winds
from the SHS disk was performed by PSD using the time-
dependent ZEUSS two-dimensional code. We Ðnd a
number of similarities with PSD, but di†erences exist as
well. Our comparison is limited to their models 2È5, i.e.,
those without a central luminous star. These models are in
agreement with the overall wind geometry discussed here.
This includes the streamline shape and the run of the wind
opening angle with radius. The streamlines in PSD appear
to form straight lines in the (r, z)-plane, in striking similarity
with the previous kinematical models. In addition, the
change in the wind opening angle with distance from the
rotation axis seems to be weak in PSD. The mass-loss rates
are consistent between both models, and so are the wind
optical depths, which can approach unity even for very
strong resonance lines (Paper II).

While PSD also Ðnd two markedly distinct Ñow regions,
the inner and outer, their inner wind, at appearsr0[ 4rwd,as the only outÑow. The outer disk region, at radii Z4rwd,exhibits a time-dependent irregular Ñow, resulting in essen-
tially no mass loss. On the other hand, in our model, mass
loss from the SHS disk is dominated by the inner wind and
the innermost part of the outer wind, as is discussed in
Paper II. Interestingly, our outer wind seems to be more
robust than the inner wind. For the inner wind, the balance
of driving and drag forces that leads to a high saddle on the
far side of the gravity hill is a rather delicate one. Setting, for
example, the centrifugal force arbitrarily to zero causes the
high saddle solution to vanish, whereas the low saddle
remains almost unchanged.

PSD suggest that the irregular behavior of their outer
Ñow is a consequence of the di†erent X-dependence of
gravity and disk Ñux, with the gravity preventing the wind
from developing. This is similar to chocking a nozzle Ñow.
However, we Ðnd here that at radii where a lowr0Z 4rwd,saddle exists, the fast increase in the projected disk Ñux,

results in a sufficiently strong growth of the lineF3
x
(X),

force, which drives the wind past the gravity hill. For the
inner wind regions, on the other hand, where no lower
saddle branch exists, the wind indeed must overcome the
gravity barrier without the appropriate radiation Ñux
increase with X. In contrast to the Ðndings of PSD, mass
overloading seems therefore more likely for the inner wind.
Indeed, from the simulations by PSD, it appears that wave-
like perturbations originate at the base of the inner wind
(D. Proga, 1999, private communication) and propagate to
outer disk regions where they prevent a stationary solution
from developing. Future work will have to clarify this issue.

Furthermore, we cannot conÐrm the dependence of j on
the disk luminosity as in the PSD model. We Ðnd that the
eigenvalue for each streamline is determined from thejcrpositions of the saddle points of the function g1~a/f. Both g
and f are independent of the disk luminosity, f speciÐcally so
because it is normalized to the Ñux at the streamline foot-

point (eq. [21]). Therefore, depends only on the radialjcrtemperature stratiÐcation in the disk.
One important issue neglected in our modeling is the

saturation of the line force when all the driving lines become
optically thin. If this thick-to-thin transition occurs before
the Ñow reaches its critical point, the wind solution is lost,
since the drag forces overcome the driving forces. However,
this still leaves the possibility that a more complicated wind
dynamics is established, where the decelerating Ñow at some
larger radius starts again to accelerate (i.e., jumps from a

to a solution). We leave this question open forW ~@ W @̀
future scrutiny and note here that the mass-loss rates
derived from the present eigenvalues E are upper limits.

The present work is based on the CAK theory for stellar
winds. Over the years, questions have been raised concern-
ing the physical meaning of the CAK critical point (Thomas
1973 ; Lucy 1975 ; Cannon & Thomas 1977 ; Abbott 1980 ;
Owocki & Rybicki 1986 ; Poe, Owocki, & Castor 1990).
Most interesting for the present context is the inclusion of
higher order corrections to the di†use line force in the
Sobolev approximation, which shift the critical point even
closer to the sonic point (Owocki & Puls 1998 ; see also Fig.
1). This proximity of the sonic and critical points may not
be coincidental, and one can speculate whether or not the
sonic point determines the mass-loss rate instead of the criti-
cal point. In contrast, we Ðnd for the disk wind cases, where
the sonic and critical points lie far apart, e.g., for a vertical
wind above an isothermal disk or a tilted wind close to the
rotation axis (““ inner wind ÏÏ).

These fundamental issues impair our understanding of
LDWs from stars and disks and therefore must be
addressed in the future.

7. SUMMARY

We discuss an analytical model for two-dimensional sta-
tionary winds from accretion disks in cataclysmic variable
stars. The parameters chosen are typical for high-accretion
rate disks in nova-like CVs. We solve the Euler equation for
the wind, accounting for a realistic radiation Ðeld above the
disk, which drives the wind by means of radiation pressure
in spectral lines. Some key assumptions are that each helical
streamline lies on a straight cone ; that the driving line force
can be parameterized according to CAK theory ; and that
the thermal gas pressure in the supersonic wind can be
neglected. Our results are summarized as follows.

The disk wind solutions are characterized by two eigen-
values, the mass-loss rate and the Ñow tilt angle, withjcr,the disk. The additional eigenvalue for each streamlinejcrreÑects the two-dimensional nature of the model. We Ðnd
that the wind exhibits a clear biconical geometry with a
small ray dispersion. SpeciÐcally, two regions can be distin-
guished in the wind, launched from within and outside 4

respectively. The tilt angle for the outer wind is j D 60¡rwd,with the disk. At these angles, the wind Ñow and radiative
Ñux vectors from the disk are well aligned. For the inner
wind, the tilt angle is larger, up to 80¡. We emphasize that
the disk wind tilt angle (i.e., the wind collimation) depends
upon the radial temperature stratiÐcation in the disk solely,
unless there is an additional degree of freedom such as
central luminosity associated with nuclear burning on the
surface of the white dwarf.

A major distinction between stellar and disk winds is the
existence of maxima in both the gravity and the disk Ñux
along each streamline. The Ñux maximum appears to be a
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crucial factor in allowing the wind to pass over the gravity
““ hill.ÏÏ The Ñux increase is more pronounced farther away
from the rotation axis. As a result, the critical point of the
outer wind lies close to the disk photosphere and to the
sonic point. In fact, it lies upstream of the top of the gravity
hill, and this proximity of the critical and sonic points is
typical of LDWs from O stars as well. On the other hand,
for the inner wind, the increase in radiation Ñux with height
is smaller, and the critical point lies far away from the sonic
point, beyond the top of the gravity hill.

Comparing our analytical models with the two-
dimensional numerical simulations of Proga et al. (1998), we

Ðnd an overall good agreement in the streamline shape, tilt
angle, and mass-loss rate, but our wind baseline is wider.

We are grateful to Jon Bjorkman, Rolf Kudritzki, Chris
Mauche, Norman Murray, Stan Owocki, Joachim Puls,
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and of its director, Charles Alcock. This work was sup-
ported in part by NASA grants NAG5-3841 and
WKU-522762-98-06, and HST GO-06546.02-95A and AR-
07982.01-96A.

APPENDIX A

LINE FORCE CAUSED BY GRADIENTS IN THE AZIMUTHAL VELOCITY

We estimate here the importance of azimuthal velocity terms for the line force in the x-direction. Assuming Keplerian
rotation within the disk, and angular momentum conservation above the disk, one has (with r and z being cylindrical
coordinates),

LvÕ/Lz
Lv

x
/Lx

\ [ 1

J2

1
tan j

1
1 ] X cos j

JW
W @

,

LvÕ/Lr
Lv

x
/Lx

\ [ 1

J2

1 [ X cos j
(1 ] X cos j)2

JW
W @

,

[ vÕ/r
Lv

x
/Lx

\ [ J2
(1 ] X cos j)2

JW
W @

. (A1)

Here, the singularity of tan~1 j at j \ 0 is a result of neglecting the pressure terms in the Euler equation. Note that LvÕ/Lr
changes sign at X \ 1/cos j. From equation (A1), gradients in are comparable to gradients in when W 1@2/W @D 1. ThevÕ v

xmain question is their inÑuence on the mass-loss rate. Because, in the CAK model, is determined by the conditions at theM0
critical point, we calculate W 1@2/W @ at the latter. We consider Ðrst a vertical wind from an isothermal disk. Since W @ grows
monotonically up to and somewhat beyond the critical point (see Fig. 8), and because W \ / W @dX, one has (Wcr)1@2/W cr@ \
(3/2)3@4] (1 [ a/a)1@2D 1. Here, and equation (18a) were used. Alternatively, the critical points of the outer windXcr \ 1/21@2
above a nonisothermal disk typically lie close to the disk, where g(X)^ X. Using equation (22a), (Xcr/W cr@ )1@2 D
(1 [ a/a)1@2D 1. Both disk cases give, therefore, essentially the same result. We conclude that can be importantvÕ-terms
everywhere between the disk photosphere and the critical point and, hence, may modify M0 .

To Ðnd their e†ect on we include in the evaluation of the line force, equation (2), in an approximate manner.M0 , vÕ-terms
Only the disk regime is considered, in which case the radiation intensity is roughly isotropic and the radiation Ñux has a
z-component only. The azimuthal part of the solid angle integral in equation (2) is approximated by a four-point quadrature
at angles nn/2 with where n \ 0, 1, 2, 3. This leads to a correction factor of the approximate formrü ,
1/4(2 ] o 1 ] S oa ] o 1 [ S oa) to the line force, EfW @a. Here, S is a linear combination of the expressions in equation (A1), with
coefficients \1 from angle integration. In the disk regime, from equation (A1). This coincides with the borderlineScr D 1
between an increase and a decrease in due to the inclusion of which lies at for and atM0 vÕ-terms, Scr\ 1.25 a \ 12 Scr \ 1.18
for Hence, a detailed, numerical calculation of the above angle integral is required to decide which of both casesa \ 23.actually occurs. Since is close to unity, the inÑuence on the mass-loss rate is limited to a 30% e†ect. We, therefore, neglectScrin calculating the line force.vÕ-terms

APPENDIX B

DISK WIND DECELERATION

In Figure 6, isocontours that cross through the low saddle point loop into one another at some larger height, AtX
d
.

one has from the Ðgure, i.e., the allowed maximum mass-loss rate in this region is smaller than that at theX [X
d
, E[ Ecrsaddle. At these distances, inertia and gravity overcome the line force plus centrifugal force, and the wind decelerates, W @\ 0.

As is shown in Paper II, the wind speed always exceeds the local escape speed at which implies that the decelerating windX
d
,

reaches inÐnity at a positive speed.
Because of the deceleration, the velocity law becomes nonmonotonic, and the line transfer is no longer purely local, because

global couplings occur between distant resonance locations. We neglect these couplings and simply replace W @a in the line
force by oW @ oa. For a wind ray launched at Figure 8 shows that a single, decelerating branch, accom-r0\ 5rwd, W ~@ \ 0,
panies the critical, accelerating solution of maximum mass-loss rate. It is suggestive that at the solution curve jumpsW @̀ X

dfrom the to the branch and extends thereupon to inÐnity.W @̀ W ~@
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The discontinuity in W @ introduces a kink in the velocity law. Such kinks propagate at sound speed (Courant & Friedrichs
1948 ; actually, for LDWs, at some modiÐed, radiative-acoustic speedÈsee Abbott 1980 and Cranmer & Owocki 1996) and
are therefore inconsistent with the assumption of stationarity. It seems plausible, however, that the discontinuity in W @ is an
artifact of the Sobolev approximation, since the latter becomes invalid at small i.e., as W @] 0. An exact line transferdv

x
/dx,

should instead give a smooth transition from to We Ðnd indeed cases of ““ almost ÏÏ smooth transitions, where bothW @̀ W ~@ .
e.g., in the top panel of Figure 8.dW

`,~@ /dX
d
] [O,
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