
A NOZZLE ANALYSIS OF SLOW-ACCELERATION SOLUTIONS IN ONE-DIMENSIONAL MODELS
OF ROTATING HOT-STAR WINDS

Thomas I. Madura and Stanley P. Owocki

Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716;

tmadura@udel.edu, owocki@bartol.udel.edu

and

Achim Feldmeier
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ABSTRACT

One-dimensional (1D) stellar windmodels for hot stars rotating atk75% of the critical rate show a sudden shift to a
slow-acceleration mode, implying a slower, denser equatorial outflow that might be associated with the dense equa-
torial regions inferred for B[e] supergiants. Here we analyze the steady 1D flow equations for a rotating stellar wind
based on a ‘‘nozzle’’ analogy for terms that constrain the local mass flux. For low rotation, we find the nozzle mini-
mum occurs near the stellar surface, allowing a transition to a standard, CAK-type steep-acceleration solution; but for
rotationsk75% of the critical rate, this inner nozzle minimum exceeds the global minimum, implying near-surface
supercritical solutions would have an overloaded mass-loss rate. In steady, analytic models in which the acceleration
is assumed to bemonotonically positive, this leads the solution to switch to a slow-accelerationmode. However, time-
dependent simulations using a numerical hydrodynamics code show that, for rotation rates 75%Y85% of critical, the
flow can develop abrupt ‘‘kink’’ transitions from a steep acceleration to a decelerating solution. For rotations above
85% of critical, the hydrodynamic simulations confirm the slow acceleration, with the lower flow speed implying
densities 5Y30 times higher than the polar (or a nonrotating) wind. Still, when gravity darkening and 2D flow effects
are accounted for, it seems unlikely that rotationally modified equatorial wind outflows could account for the very
large densities inferred for the equatorial regions around B[e] supergiants.

Subject headinggs: hydrodynamics — stars: early-type — stars: emission-line, Be — stars: mass loss —
stars: rotation — stars: winds, outflows

1. INTRODUCTION

Hot, luminous, massive stars of spectral types O and B are
generally quite rapid rotators, with inferred surface rotation
speeds typically in the range of several hundred kilometers per
second, or a substantial fraction of the critical rotation speed
(ca. 400Y600 km s�1) at which material at the rotating equatorial
surface would be in Keplerian orbit. Such luminous stars are also
characterized by strong stellar wind outflows, driven by the line
scattering of the star’s continuum radiation flux (Castor et al. 1975,
hereafter CAK). A long-standing question is how such wind out-
flows are affected by the star’s rotation and in particular whether
this might play a role in the enhanced equatorial density outflows
and/or disks inferred in certain classes of particularly rapid ro-
tators, e.g., Be and B[e] stars.

For classical Be stars, there is now substantial observational
evidence (see, e.g., papers in Ignace & Gayley 2005) that the
disks are Keplerian in nature, with very limited radial outflow;
they are thus probably not a direct result of feeding by a steady
stellar wind (Owocki 2005). However, for the disk and/or en-
hanced equatorial outflows inferred in supergiant B[e] stars, wind
mechanisms still seem a viable option. For example, Lamers &
Pauldrach (1991) and Pelupessy et al. (2000) have noted that the
‘‘bistability’’ enhancement in opacity which occurs for some value
of the local surface effective temperature (i.e., for B-type stars at
�22,000 K; see Pauldrach & Puls 1990; Vink et al. 1999) as-
sociated with the reduced radiation temperature near the equator
can lead to a factor of several enhancement in the radial mass
flux. By itself, this seems inadequate to explain equatorial densi-

ties estimated to be hundreds or even thousands of times the den-
sities of the polar winds in these stars (Zickgraf et al. 1985; Kraus
& Miroshnichenko 2006). However, a recent series of papers by
M. Curé and colleagues (Curé 2004; Curé &Rial 2004; Curé et al.
2005) proposes that, for very high, near-critical rotation, a switch
of the wind outflow to a slower, shallow-acceleration solution can
lead to a further enhancement in density that, together with the
bistability effect, might reach the equatorial densities inferred in
B[e] supergiants.

This paper aims to understand better the physical origin of
these shallow wind acceleration solutions for high rotation rates
and to examine critically their likely relevance for explaining
dense equatorial disks or outflows.

Modeling rotating, hot-star winds began with the studies by
Friend & Abbott (1986, hereafter FA86) and by Pauldrach et al.
(1986, hereafter PPK86), who extended the CAK formalism by
adding the effect of an outward centrifugal acceleration to one-
dimensional (1D) models of the wind outflow in the equatorial
plane. Both FA86 and PPK86 independently derived a modified
CAKmodel (mCAK) that relaxes the CAK ‘‘point star’’ approx-
imation and properly accounts for the finite cone angle subtended
by the star. They each then found that the reduction in the effective
gravity by the outward centrifugal force tends to increase themass-
loss rate and decrease the wind speed. However, for the models
computed, up to about 75% of the critical rotation rate, both
changes are limited to only a factor of a few and are thus insuf-
ficient to produce the large equatorial densities and low velocities
inferred in B[e] supergiants. Moreover, for still faster rotation,
above about 75% critical, FA86 found that the equations for
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outward acceleration could no longer be integrated beyond some
finite radius, and thus they were unable to derive any complete
flow solutions for such rapid rotation speeds. Subsequent 1D
models have investigated the role of magnetic forces (Friend &
MacGregor 1984; Poe & Friend 1986) and sound waves (Koninx
& Hearn 1992), but as summarized by Bjorkman & Cassinelli
(1993) neither mechanism seems favorable for producing slow,
dense equatorial outflows.

More fundamentally, the physical relevance of any such 1D
models may be limited since accounting for latitudinal flows to-
ward or away from the equator requires at least a two-dimensional
(2D) treatment. A vivid example comes from the 2D ‘‘wind-
compressed disk’’ (WCD) model of Bjorkman & Cassinelli
(1993), which argues that conservation of angular momentum
should tend to channel material from higher latitudes toward an
equatorially compressed disk flow. If one assumes a purely ra-
dial driving force, 2D hydrodynamic simulations (Owocki et al.
1994) confirm the basic WCD effect but show that, depending
on whether material reaches the equator above or below some
‘‘stagnation point,’’ it either drifts outward or falls back toward
the star. Such simultaneous infall-plus-outflow behavior is not
possible in a steady 1Dmodel but is a perfectly natural outcome
in a 2D simulation. Furthermore, Cranmer & Owocki (1995)
showed that, when computed from proper angle integration of
intensity from the rotationally distorted stellar surface, the line
force also has nonzero, nonradial components in both azimuth
and latitude. Owocki et al. (1996; see also Petrenz & Puls 2000)
showed that such nonradial line forces can inhibit the forma-
tion of aWCD. Finally, equatorial gravity darkening can actually
reduce thewindmass flux from the equator and so lead to an equa-
torial wind density that is lower, not higher, than near the poles.

Despite this likely importance of such 2D effects, several re-
cent analyses (Curé 2004; Curé & Rial 2004; Curé et al. 2005)
have reexamined the 1D equatorial flow models of FA86, with a
particular focus on the failure to obtain monotonically acceler-
ating wind solutions for rotation above about 75% of the critical
speed. In particular, these papers argue that for such very high,
near-critical rotation, the wind solution can switch to an alterna-
tive mode, characterized by amuch slower outward acceleration.
Together with a moderately enhanced mass flux, the resulting
lower speed outflow then implies a substantial enhancement
in density, relative to the standard CAK, steep acceleration ap-
plicable at higher latitudes. When combined with parameter-
izations intended to mimic a bistability enhancement in the line
driving (Lamers & Pauldrach 1991; Pelupessy et al. 2000), Curé
et al. (2005) predict equator-to-pole density contrasts of the order
of 102Y104.

Assessing the physical relevance of such claims for under-
standing B[e] stars will eventually require proper account of the
multidimensional effects noted above. Nonetheless, to provide a
solid basis for such multidimensional models, it is important to
have a clearer, dynamical understanding of these novel 1D slow-
outflow solutions. By combining analytic studies with numerical
hydrodynamic simulations, this paper examines the reality and
physical origin of the shallow wind acceleration solutions for
high rotation rates, with emphasis on their possible relevance to
disk outflows from B[e] supergiants.

We begin (x 2) with a basic review of the general time-
dependent wind equations, together with their CAK-type, steady
state solutions in a nonrotating wind. To provide a physical basis
for extending these steady models to include rotation, we first
(x 3) apply a simple ‘‘nozzle’’ analysis (see Holzer 1977; Abbott
1980), originally developed to studywinds driven from luminous
accretion disks (Pereyra et al. 2004). With a few judicious, yet

quite reasonable, approximations (e.g., neglecting gas pressure
terms by taking the zero sound-speed limit, using a beta velocity
law to evaluate the finite-disk correction as an explicit function
of radius), it is possible to obtain simple integrations of the equa-
tion of motion and to study the scalings of the mass-loss rate with
rotation, as well as the switch from steep- to shallow-acceleration
solutions beyond a threshold rotation rate. To test the validity of
these simple analytic solutions, we next apply a numerical hydro-
dynamics code (x 4) to evolve 1D rotating wind models to as-
ymptotic steady states (x 5.1). Results confirm a transition to
slower acceleration at very high rotation (above about 85% of
critical) but also show a new class of nonmonotonic ‘‘kink’’
solutions that apply for moderately fast rotation (ca. 75%Y85%
of critical). We then examine (xx 5.2Y5.3) the time evolution of
solutions in various rotation domains, with emphasis on the kink
solutions and on a peculiar transition case (85% of critical ro-
tation), characterized by an initial wind overloading followed by
a flow stagnation and eventual reaccretion of material onto the star.
We conclude with a summary and outlook for future work (x 6).

2. GENERAL FORMALISM FOR LINE-DRIVEN
MASS LOSS

2.1. 1D Time-dependent Equations of Motion

In this paper, we examine 1D radiatively driven outflow in the
equatorial plane of a rotating star. For the general time-dependent
simulations discussed in x 3, the relevant equations for conserva-
tion of mass and radial component of momentum have the form

@�

@t
þ 1

r 2
@ r 2�vð Þ

@r
¼ 0; ð1Þ

@v

@t
þ v

@v

@r
¼

v 2�
r
� 1

�

@P

@r
� GM� 1� �eð Þ

r 2
þ glines; ð2Þ

where r and t are the radius and time, and � and v are the mass
density and radial component of the velocity. The body forces
here include the outward radiative acceleration from line scat-
tering, glines, and an effective inward gravitational acceleration,
GM�(1� �e)/r

2, reduced by the outward continuum radiative
force from scattering by free electrons, as accounted for by the
Eddington parameter, �e ¼ �eL� /4�GM�c. For the centrifugal
term, v 2� /r, we avoid explicit treatment of an azimuthal momen-
tum equation by assuming simple angular momentum conser-
vation (which is a good approximation in the supersonic flow
domain considered here), yielding then for the azimuthal speed

v� ¼ vrot
R�
r
; ð3Þ

where vrot is the rotation speed at the star’s equatorial surface ra-
dius R�. For simplicity, we also avoid a detailed treatment of the
wind energy balance by assuming an isothermal outflow, forwhich
the pressure is written as P ¼ �a2, where a is the (constant, iso-
thermal) sound speed.

2.2. Steady State Equations with Rotation

For the simplified case of a steady state, the time-dependent
terms vanish (@ /@t ¼ 0), yielding for the steady acceleration

v
dv

dr
¼ � GM� 1� �eð Þ

r 2
þ v 2rotR

2
�

r 3
þ glines �

a2

�

d�

dr
: ð4Þ
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The steady form for mass conservation implies a constancy
for the overall mass-loss rate, Ṁ � 4��vr 2. Using this to elimi-
nate the density �, the equation of motion (4) takes the form

1� a2

v2

� �
v
dv

dr
¼ � GM� 1� �eð Þ

r 2
þ v2rotR

2
�

r 3
þ glines þ

2a2

r
: ð5Þ

The factor in square brackets on the left-hand side allows for a
smooth mapping of the wind base onto a hydrostatic atmosphere
below the sonic point, where v < a. However, in radiatively
driven winds the pressure terms on the right-hand side are gener-
ally negligible since, compared to the gravitational acceleration
term that must be overcome to drive a wind, these are of order
ws � (a/vesc)

2 � 0:001, where vesc � 2GM�(1� �e)/R�½ �1=2 is
the effective escape speed from the stellar surface radius R�.

Since the key to a stellar wind is overcoming gravity, it is con-
venient to define a dimensionless equation of motion that scales
all accelerations by the effective gravity,

1� ws

w

� �
w0 ¼ �1þ !2 1� xð Þ þ �lines þ

4ws

1� x
; ð6Þ

where �lines � glinesr
2 /GM�(1� �e), and the gravitationally

scaled inertia isw0 � dw/dx ¼ r 2v(dv/dr)/GM�(1� �e). The in-
dependent variable here is the inverse radius coordinate x �
1� R� /r, while the dependent variable is the ratio of the radial ki-
netic energy to the effective surface escape energy, w � v2 /v2esc.
Gas pressure effects are accounted for by terms containing ws �
a2 /v 2esc, while centrifugal effects from rotation are characterized
in terms of the ratio of the equatorial rotation speed to critical
speed, ! � vrot /vcrit ¼

ffiffiffi
2

p
vrot /vesc, under the assumption that the

wind material conserves its surface value of specific angular
momentum, rv�(r) ¼ vrotR�.

Within the CAK formalism for driving by scattering of a point
source of radiation by an ensemble of lines, the deshadowing of
optically thick lines by the Doppler shift associated with the
wind acceleration gives the scaled radiative acceleration �lines a
power-law dependence on the flow acceleration w0,

�lines ¼ Cw0�; ð7Þ

where � is the CAK power index. Here we have eliminated an
inverse dependence on density � in favor of the mass-loss rate
Ṁ ¼ 4�r 2�v, with the line force constant thus defined by

C � 1

1� �

L�

Ṁc2

� ��
Q̄�e

1� �e

� �1��

; ð8Þ

with L� the stellar luminosity and �e the Eddington parameter
for the gravitationally scaled radiative acceleration from electron
scattering opacity, �e (in square centimeters per gram; Lamers &
Cassinelli 1999; Owocki 2004). We have also used the Gayley
(1995) Q̄ notation for the overall normalization of the line opac-
ity. Note that, for fixed sets of stellar parameters (L�;M�;�e) and
line opacity (�; Q̄), the constant C scales with the mass-loss rate
as C / 1/Ṁ�.

As already noted, the smallness of the dimensionless sound-
speed parameter ws implies that gas pressure plays little role in
the dynamics of any line-driven stellar wind. Hence, to a good
approximation, we can obtain accurate solutions by analyzing
the much simpler limit of vanishing sound speed a / w1=2

s ! 0,
for which the line-driven wind equation of motion reduces to

w0 ¼ �1þ !2 1� xð Þ þ Cw0�: ð9Þ

2.3. Classical CAK Solution for a Point Star

Let us first review the standard CAK solutionwithout rotation,
setting ! ¼ 0. Note then that since the parameters �e and C are
spatially constant, the solution is independent of radius. For high

Ṁ and smallC there are no solutions, while for small Ṁ and high
C there are two solutions. The CAK critical solution (denoted by
the subscript c) corresponds to a maximal mass-loss rate, which
requires a tangential intersection between the line force Cw0�

and the combined inertia plus gravity 1þ w0, for which

�Ccw
0��1
c ¼ 1; ð10Þ

and thus, together with the equation of motion (9), we have

w0
c ¼

�

1� �
; ð11Þ

with

Cc ¼
1

�� 1� �ð Þ1��
: ð12Þ

Using equation (8), this then yields the standard CAK scaling for
the mass-loss rate,

ṀCAK ¼ L�
c2

�

1� �

Q̄�e

1� �e

� � 1��ð Þ=�

: ð13Þ

Moreover, since the scaled equation of motion (9) has no explicit
spatial dependence, the scaled critical acceleration w0

c applies
throughout the wind. This can therefore be trivially integrated to
yield

w xð Þ ¼ w 1ð Þx; ð14Þ

where w(1) ¼ � /(1� �) is the terminal value of the scaled flow
energy. In terms of dimensional quantities, this represents a spe-
cific case of the general beta velocity law,

v rð Þ¼ v1 1� R�
r

� ��

; ð15Þ

where in this case � ¼ 1
2
, and the wind terminal speed scales

with the effective escape speed from the stellar surface, v1 ¼
vesc � /(1� �)½ �1=2.

2.4. Finite-Disk Form for the CAK Line Force

The above analysis is based on the idealization of radially
streaming radiation, as if the star were a point source at the origin.
This was the basis of the original CAK wind solutions, although
they did already identify (but did not implement) the appropriate
‘‘finite-disk correction factor’’ (FDCF) to account for the full
angular extent of the star (see Castor et al. 1975, eq. [50]),

f rð Þ ¼
1þ �ð Þ1þ�� 1þ ��2

�
� 	1þ�

1þ �ð Þ� 1þ �ð Þ� 1� �2
�

� 	 ; ð16Þ

with �� � (1� R2
� /r

2)1
=2 the cosine of the finite cone angle

of the stellar disk and � � d ln v/d ln r � 1. When this factor is
included to modify the point-star CAK line acceleration (from
eq. [7]), its complex dependence on radius, velocity, and velocity
gradient complicates the solution of the full equation of motion.
Full solutions derived independently by FA86 and PPK86 yield a
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somewhat reduced mass-loss rate Ṁfd � ṀCAK /(1þ �)1
=� and

higher terminal speed v1 � 3vesc.
But if we approximate the wind velocity law by the simple

beta-law form of equation (15), then the FDCF can be evaluated
as an explicit spatial function. Figure 1 illustrates the resulting
variation of f with the scaled coordinate x for � ¼ 1

2 and various
values of �. Note that the overall form is quite similar for all
cases, increasing from a surface value f� � f (R�) ¼ 1/(1þ �) to
past unity at the isotropic expansion radius (where dv/dr ¼ v/r),
r /R� ¼ (1þ � ) [corresponding to x ¼ � /(1þ � )], and eventu-
ally returning asymptotically to unity from above at large radii
(x ! 1).

In the steady wind analysis in the next section, we thus choose
the canonical value � ¼ 1 to represent the FDCF as an explicit
spatial function (PPK86).

3. STEADY STATE SOLUTIONS FOR 1D MODELS
OF ROTATING, LINE-DRIVEN STELLAR WINDS

3.1. Nozzle Analysis for Steady Wind Acceleration

Let us now examine how the combined effects of the FDCF
and rotation alter the classical CAK result. Note that we are ig-
noring here gravity darkening and oblateness effects, as well as
any bistability in the line-driving parameters between the polar
and equatorial wind. For a rotating star and wind, the FDCF can
become even more complicated, modified by the rotational shear
of the wind outflow and by the oblateness of the star, and possibly
also by the equatorial gravity darkening of the source radiation
(Cranmer & Owocki 1995; Gayley & Owocki 2000). However,
for simplicity, let us nonetheless base our analysis on the spatially
explicit form obtained by assuming a canonical � ¼ 1 velocity
law (15) within finite-disk factor (16) for a simple spherical ex-
pansion. In the zero sound-speed limit, the scaled equation of
motion (9) can now be written in the form

w0 ¼ �1þ !2 1� xð Þþ f Cc

w 0

ṁ

� ��

; ð17Þ

where we have normalized the line force in terms related to the
point star CAKmodel, with ṁ � Ṁ /ṀCAK, the ratio of the mass-
loss rate to the point-star CAK value. Note then that for the non-
rotating (! ¼ 0), point-star ( f ¼ 1) case of the classical CAK
model, the critical solution (with maximal mass loss) is given by

ṁ ¼ 1 and w(x) ¼ � /(1� �)x. As noted in x 2.3, this implies a
CAKmass-loss rate Ṁ ¼ ṀCAK and a velocity law v(r) ¼ v1(1�
R� /r)

1=2, with terminal speed v1 ¼ � /(1� �)½ �1=2vesc.
To analyze models with rotation, a particularly convenient

case is to take� ¼ 1
2
, for which the equation of motion (17) (using

eq. [12] for Cc) becomes a simple quadratic in w0ð Þ1=2,

w0 � 2f

ffiffiffiffiffiffi
w0

ṁ

r
þ g xð Þ ¼ 0; ð18Þ

where for convenience we have defined a rotationally reduced
gravity as g(x) � 1� !2(1� x). We can then solve for a shallow
(�) and steep (+) acceleration solution,

w0
� xð Þ¼ g xð Þn xð Þ

ṁ
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ṁ

n xð Þ

s" # 2

; ð19Þ

with the ‘‘nozzle function,’’

n xð Þ � f xð Þ2

g xð Þ ¼ f xð Þ2

1� !2 1� xð Þ : ð20Þ

The significance of this nozzle function stems from its appear-
ance with the mass-loss rate ṁ within the square-root discrimi-
nant (cf. de Laval nozzle; Abbott 1980). In particular, we can
readily see that maintaining a numerically real flow acceleration
requires1 amass-loss rate ṁ � min½n(x)�. As such, the location of
the globalminimumof this function (the smallest nozzle ‘‘throat’’)
represents the critical point that sets the maximal allowed value
of the mass-loss rate, ṁ ¼ min½n(x)�, that is consistent with a
monotonically accelerating outflow.
Figure 2 plots n(x) versus x for various rotation rates !, using a

� ¼ 1 velocity law to obtain a spatially explicit approximation to
the FDCF. Note that for no or low rotation (about ! < 0:75), the
minimum of the nozzle function is less than unity and occurs at
the stellar surface, x ¼ 0. This allows the flow to transition to a

Fig. 1.—Spatial variation of the FDCF f vs. scaled inverse radius x ¼ 1�
R� /r for CAK exponent� ¼ 1

2
and various velocity-law exponents, � ¼ 0:5, 1, 2,

and 5. The horizontal dashed line denotes the unit correction that applies at the
point of isotropic expansion (where � ¼ d ln v/d ln r � 1 ¼ 0) and at large dis-
tances where the star approaches the point-source form assumed in the original
CAK model.

1 Actually, this restriction really stems from our CAK scaling of the line
forcewithw0� [in this case w0ð Þ1=2], which requires a strictly positive acceleration,
w0 > 0. But if we provide a backup scaling for negative accelerations, then
‘‘overloaded’’ situations, for which the square-root discriminant in eq. (19) be-
comes negative, simply lead to an abrupt switch, a so-called kink (Cranmer &
Owocki 1996), to a decelerating solution. See xx 4 and 6 for further details.

Fig. 2.—Nozzle function n(x) vs. scaled inverse radius x ¼ 1� R� /r for var-
ious rotation rates! ¼ 0, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95, ranging from lowermost
to uppermost. All curves use a � ¼ 1 velocity law in evaluating the FDCF. The
horizontal dashed line at unit value represents the nozzle function for the CAK
point-star model, with n ¼ f ¼ g ¼ 1.
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supercritical outflow directly from the static surface boundary
condition w(0) ¼ 0, following the steeper, plus (+) root for the
acceleration in equation (19), but with a mass-loss rate less than
the point-star CAK value,

ṁ ¼ ṁ0 � n x ¼ 0ð Þ � f 2 x ¼ 0ð Þ
1� !2

¼ 4=9

1� !2
: ð21Þ

Note that the factor of 4/9 in the numerator is just the� ¼ 1
2 value

for the zero-rotation, finite-disk corrected mass loss scaling de-
rived by FA86 and PPK86,

ṁfd �
Ṁfd

ṀCAK

¼ f 1=�� ¼ 1

1þ �ð Þ1=�
: ð22Þ

By contrast, for large rotation rates (about ! > 0:75), this
nozzle minimum is unity and occurs at large radii, x ¼ 1; satis-
fying the static surface boundary condition now implies that the
flow at all finite radii should remain subcritical, following the
shallower, minus (�) root for the acceleration in equation (19),
now with a mass-loss rate just equal to the point-star CAK value,
ṁ ¼ 1.

This thus provides the basic explanation for the switch from
steep to shallow accelerations inferred by Curé et al. (2005).

3.2. Nozzle Solutions for the Velocity Law
in 1D Rotating Winds

The associated wind velocity laws can be obtained by sim-
ple numerical integration of equation (19) from a static boundary
w(0) ¼ 0, following either the steep or the shallow solution, de-
pending on whether the rotation rate is high enough to shift the
critical point [where n(x) has its absolute minimum] from the
surface (x ¼ 0) to large radii (x ¼ 1). Figure 3a plots the result-
ing velocity laws for selected slow versus rapid rotation rates, yield-
ing the steep versus shallow types of flow solution, respectively.
The dashed curve in Figure 3a plots the escape speed vesc as a
function of x, showing that these winds are capable of escaping

the star. Figure 3b compares results from full dynamical sim-
ulations described below.

Figure 4 illustrates the associated terminal speed and mass-
loss rates for these solutions (solid lines), plotted as a function of
rotation rate !. As the rotation increases past the threshold rate at
! � 0:75, the solid curves show an abrupt shift from steep ac-
celeration to shallow acceleration, with the mass loss saturating
to the point-star CAK value, ṁ ¼ 1. The dashed curves show
extrapolated results if the local nozzle minimum at the surface
is instead used to set flow conditions; the mass loss in this case is
set by the scaling ṁ0 in equation (21), and the terminal speed is
derived by assuming a pure gravitational coasting for all radii

Fig. 3.—(a) Flow speed over escape speed, v/vesc ¼ w1=2, vs. scaled inverse radius x ¼ 1� R� /r, as derived from a nozzle analysis, using a steep acceleration for no or
modest rotation, ! ¼ 0, 0.5, 0.6, 0.7, and 0.74 and shallow acceleration for rapid, near-critical rotation, ! ¼ 0:75, 0.8, 0.85, 0.9, and 0.95. The dashed curve shows the
escape speed as a function of x. (b) Same as (a), but as found using asymptotic states of full hydrodynamic simulations. Note again the steep, supercritical accelerations for
no or modest rotation, ! ¼ 0, 0.5, and 0.7, and shallow, subcritical accelerations for rapid, near-critical rotation, ! ¼ 0:86, 0.9, and 0.95. However, note also the kink
solutions present for ! ¼ 0:75, 0.8, 0.82, and 0.84 and the collapsed solution for ! ¼ 0:85.

Fig. 3a Fig. 3b

Fig. 4.—Upper solid curve: Terminal flow speed over escape speed, v1 /vesc ¼
w(1)½ �1=2, vs. rotation rate !, showing the shift from fast to slow wind as rotation
rate is increased past ca. ! ¼ 0:75. Lower solid curve: Mass-loss rate in units of
point-star CAKvalue vs. rotation rate!, showing the saturation at the CAKmass-
loss rate for rapid rotation, ! > 0:75. Dashed curves show the continued steady
decrease in v1 /vesc and increase in ṁ if the local nozzle minimum at the stellar
surface is used to set flow conditions (x 3.2). The circles (v1 /vesc) and triangles
(ṁ) show corresponding results from full hydrodynamic simulations.
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with n(x) < ṁ0. The data points again compare corresponding
results for the full dynamical simulation, as described further in
the next sections.

4. SPECIFICATIONS FOR NUMERICAL
HYDRODYNAMICS SIMULATIONS

The above nozzle analysis provides a helpful framework for
understanding the nature of flow solutions from a rotating wind
model but is based on some key simplifications, e.g., neglect of
gas pressure (inclusion of which would lead to a wind that is not
supercritical directly from the static surface boundary) and an
approximate, spatially explicit form for the FDCF. Moreover, it
implicitly assumes that the derived solutions are the only rele-
vant stable, attracting steady states for the rotating wind outflow.
To test the validity of these simplifications and assumptions, let
us now examine the time evolution of analogous 1D flow mod-
els, also including both the finite gas pressure and the dynami-
cally computed FDCF. Our specific approach here is to use a
numerical hydrodynamics code to evolve a 1D time-dependent
model of the equatorial plane for a line-driven stellar wind from
a rotating star toward an equilibrium steady state for the resulting
flow. The results of these simulations can then be compared to
those predicted by the steady state nozzle analysis presented above.

The numerical models presented here were computed using a
piecewise parabolic method (PPM; Collela & Woodward 1984)
hydrodynamics code called VH-1, originally developed at the
University of Virginia (J. Blondin). The basic code was modified
for the present study to include radiative driving terms, solving the
time-dependent equations for 1D spherical outflow equations (1)
and (2). The spatial mesh uses nr ¼ 600 radial zones extend-
ing from the base at the stellar surface, r1 ¼ Rmin ¼ R�, to a max-
imum r600 ¼ Rmax ¼ 100R�, with the zone spacing starting at
�r1 ¼ 6:18 ; 10�5R� and then increasing by 2.5% per zone out
to r350 ¼ 15R�, after which it remains constant at�r ¼ 0:333R�
to the outer boundary. Tests with double the grid resolution for
selected cases give similar results to the above standard values.

The parabolic method requires flow variables to be specified
in a phantom zone beyond each boundary. At the outer radius, we
assume supercritical outflow, with boundary conditions set by
simple flow extrapolation assuming constant gradients. This is
justified because, as discussed in the Appendix, when finite sound-
speed terms are included, the critical point for even the shallow-
acceleration solutions should be well within our assumed outer
boundary radius of Rmax ¼ 100R�.

At the inner boundary, the velocity in the two radial zones
below imin is set by constant-slope extrapolation, thus allow-
ing the base velocity to adjust to whatever is appropriate for the
overlying flow (Owocki et al. 1994). This usually corresponds to
a subsonic wind outflow, although inflow at up to the sound
speed is also allowed. The base density is fixed at �0 ¼ 8:709 ;
10�13 g cm�3, a value chosen because, for the characteristic wind
mass fluxes of these models, it yields a steady base outflow that
is moderately subsonic. A lower boundary density much smaller
than this produces a base outflow that is supersonic and thus is
unable to adjust properly to the mass flux appropriate to the over-
lying line-driven wind. On the other hand, a much larger base
density makes the lower boundary too ‘‘stiff,’’ leading to persis-
tent oscillations in the base velocity (Owocki et al. 1994).

These time-dependent simulations also require setting an ini-
tial condition for the density and velocity over the entire spacial
mesh at some starting time t ¼ 0. For this we generally use a
standard, finite-disk corrected CAKwind, computed by relaxing
a 1D, nonrotating simulation to a steady state; however, for se-
lected models with moderately rapid rotation, we also explore

using a slow-acceleration initial condition (see x 5.3). From the
assumed initial condition, the models are advanced forward in
time steps set to a fixed fraction 0.25 of the Courant time.
Our version of VH-1 is set up to operate in cgs units, requiring

specification of physical values for the basic parameters for both
the star (e.g., mass, radius, and luminosity) and wind (e.g., CAK
k, �, and 	 ). Building on our earlier studies of Be stars, the spe-
cific parameters chosen here are for a main-sequence B star with
massM� ¼ 7:5 M	, radiusR� ¼ 4 R	, luminosityL� ¼ 2310 L	,
and temperature T ¼ 2 ; 104 K; but we have also explored mod-
els with parameters appropriate for supergiant B[e] stars. These
stellar parameters imply an Eddington parameter of �e ¼ 0:008,
an isothermal sound speed of a ¼ 16:6 km s�1, and escape and
critical speeds of vesc ¼ 845 km s�1 and vcrit ¼ 597 km s�1. We
also assume a CAK power-law index of � ¼ 1

2
and cumulative

line-strength parameter Q̄ ¼ 1533 (Gayley 1995). The value of 	
has been set to zero in all simulations.
In any case, for a given choice of the CAK power-law index�,

we find that results are largely independent of the specific phys-
ical parameters when cast in appropriately scaled units, normal-
izing, for example, radius by the stellar radius R�, velocity by the
wind terminal velocity v1 (which in turn scales with the stellar
surface escape speed), time by the characteristic flow time R� /v1,
and mass-loss rate in terms of the classical (point star) CAK value
given in equation (13). To facilitate comparison with the analytic
nozzle analysis in xx 2 and 3, we again choose � ¼ 1

2
and plot all

simulation results using the above scalings.
We further note that essentially all the key VH-1 results re-

ported here were very well reproduced by a completely indepen-
dent, simple dimensionless hydrodynamics code developed by
one of us (A. F.; Feldmeier & Nikutta 2006). Finally, in such
time-dependent simulations of line-driven winds, one must also
supply a generalized scaling for the line force that applies in the
case of nonmonotonic flow acceleration. In general this requires
taking into account nonlocal couplings of the line transfer (see,
e.g., Feldmeier & Nikutta 2006), but we wish here to retain the
substantial advantages of using a purely local form for the line
driving. Noting that a negative velocity gradient implies a prior
line resonance that shadows radial photons from the star, a lower
limit would be just to set gline ¼ 0 whenever dv/dr < 0. On the
other hand, since forward scattering can substantially weaken
any such shadowing by a prior resonance, an upper limit would
be to compute the local line force using the absolute value of the
velocity gradient, gline / jdv/drj�. As a simple compromise be-
tween these two extremes, we choose here a scaling that trun-
cates the radial velocity gradient to zero whenever it is negative,
i.e., dv/dr ! max (dv/dr; 0). For a point-star model with radi-
ally streaming radiation, this would give a zero line force (since
dv/dr < 0), but when one accounts for the lateral expansion v/r
within the FDCF, it leads to a line force in which the usual de-
pendence on radial velocity gradient is replaced by a dependence
on the expansion gradient,

gline /
v

r

� ��

: ð23Þ

This leads to a line acceleration that is intermediate between the
underestimate and overestimate of the twomore extreme scalings.

5. COMPARISON WITH TIME-DEPENDENT
HYDRODYNAMIC SIMULATIONS

5.1. Asymptotic Steady States of Time-dependent Simulations

In our basic parameter study, each simulation is run using the
same initial condition, spatial mesh, boundary conditions, base
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density, etc., with the only variation being the rotation rate !,
which is set to specific values ranging from 0.1 to 0.97. With only
one exception (for the ! ¼ 0:85 case, which turns to be a rather
pathological value; see x 5.2), all simulations asymptotically relax
to a well-defined steady state. Moreover, for both moderate ro-
tation (! < 0:75) and high rotation (! > 0:85), these asymptotic
states agree remarkably well with the predictions of the above
nozzle analysis. Figure 3b shows the velocity laws for these final
states, scaled in the same form used in Figure 3a for the nozzle-
analysis results. Note that both Figures 3a and 3b show a steep
acceleration for no ormodest rotation (! ¼ 0Y0:7) and shallowac-
celeration for rapid, near-critical rotation (! ¼ 0:86, 0.9, and 0.95).

However, for the moderately high rotation rate cases ! ¼ 0:75,
0.8, 0.82, and 0.84, note also the appearance of a new class of kink
solutions, characterized by an abrupt shift to a decelerating or
‘‘coasting’’ flow beyond a well-defined ‘‘kink radius’’ rkink. These
kink solutions thus represent a kind of intermediary final state of
the time-dependent simulations in the parameter ranges 0:75 <
! < 0:85, effectively smoothing the abrupt jump from fast- to
slow-acceleration solutions expected from steady state analyses.
The formation of such kinks and their underlying physical cause
are discussed further in the section below (x 5.2) on time evolution.

Figure 4 shows that the fully dynamical results for the scaled
ratio of right boundary speed (circles) and CAK-scaled mass-
loss rate (triangles) are generally in good agreement with the

predictions of the simple nozzle analysis (solid curves), with
the modest, ca. 10% differences likely attributable to inclusion
in the simulations of a small but finite sound speed (Owocki
and ud-Doula 2004). However, for rotation rates 0:75 < ! <
0:85, the dynamical results tend to follow the dashed curves of
the extended nozzle analysis, representing extended fast solu-
tions, rather than the abrupt shift to slow solutions, indicated by
the solid curves. As discussed above, this range of rotation rates
is characterized by kink solutions. To understand better this de-
velopment of fast versus slow versus kink solutions, let us now
examine the time evolution of the simulations toward asymp-
totic states.

5.2. Time Relaxation of 1D Rotation Models

For the specific rotation rates! ¼ 0:7, 0.8, 0.84, and 0.90,which
span the parameter range between fast- and slow-acceleration
solutions, Figure 5 uses gray-scale plots of the mass-loss rate (in
units of the point-star CAK value) to illustrate the time relaxation
from the CAK initial condition (set to a nonrotating, finite-disk
corrected CAK model) to an asymptotic steady state. Time is
given in units of the flow time t ¼ R� /v1, and the final values of
the scaled mass-loss rate are indicated above the associated plot.
Note that there are distinct differences in the time evolution of
eachmodel, with the more rapid rotation cases characterized by a
longer relaxation time, but the temporal and spatial constancy of

Fig. 5.—Gray-scale plots showing time evolution of mass-loss rate in units of the point-star CAK value. The corresponding rotation rate and final mass-loss rate are
given above each plot. Time is in units of the flow time t ¼ R� /v1. Note in each the eventual constancy of themass-loss rate with both radius and time, indicating relaxation
to a steady state solution. Note that the ranges for both gray scale and time differ for each panel.
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the final mass-loss rates illustrate the steady nature of the as-
ymptotic solutions.

Despite this temporal and radial constancy in the mass flux,
the asymptotic states of the models with ! ¼ 0:8 and 0.84 in-
clude a kink, or abrupt discontinuity in their velocity gradient. To
illustrate the formation of these kinks, the gray scales in Figure 6
show the evolution of the scaled velocity gradient. In both cases,
the abrupt switch from a steep-acceleration solution to a decel-
erating solution is apparent from the sharp transition from pos-
itive to negative velocity gradient, with the kink radius, rkink,
indicated above each plot. Since, despite the radial discontinuity,
the velocity gradient contours all become constant in time, we
see clearly that the kink solutions are indeed perfectly valid steady
states.

Note, however, that the kink radius shifts from rkink ¼ 4:18R�
for the ! ¼ 0:8 model to rkink ¼ 2:12R� for the more rapid rota-
tion, ! ¼ 0:84 model. From the velocity-law plots in Figure 3b,
this also implies that the more rapid rotating case has a more ex-
tended deceleration region and thus ends up with a much lower
final speed. We can thus anticipate that a somewhat faster rota-
tion rate should give an even lower kink radius, with the more
extended decelerating region leading to an even lower final speed,

or perhaps even to a flow stagnation (zero velocity) at a finite
radius. In particular, note from Figure 4 that the dashed extrapo-
lation curve suggests that the onset of such flow stagnation should
occur near a rotation rate of ! � 0:85.
In fact, our numerical simulations do show that models near

this rate have a quite pathological behavior. This is illustrated in
Figure 7, which presents gray-scale plots of the time evolution
for the mass-loss rate (Fig. 7a) and the scaled velocity gradient
(Fig. 7a) in this ! ¼ 0:85 case. An overloading of the wind and
eventual collapse of the time-dependent solution are shown in
these figures. In the first 300 flow times, there is an initial kink
formation, but at its lower radius of rkink ¼1:77R� the kink out-
flow speed is quite low, vkink � 370 km s�1, well below the local
escape speed vesc(rkink) � 640 km s�1. With the reduced line
driving in the decelerating region, the wind outflow now stag-
nates at a finite radius, rstag � 10R�. There material accumulates
until it is eventually pulled back by the stellar gravity into a re-
accretion onto the star, effectively quenching both the kink and
base outflow.
For this particular case, the outflow never fully recovers from

this quenching, but for only slightlymore rapid rotation,!k 0:86,
any flow stagnation occurs relatively close to the star, with a

Fig. 6.—Gray-scale plots showing time evolution of the scaled velocity gradient in cgs units. The corresponding rotation rate and kink location rkink are given above each plot.

Fig. 7.—(a) Gray-scale plot of the local mass-loss rate in units of the point-star CAK value for ! ¼ 0:85, showing the collapse of the solution. Note the pileup of
material at a distance of r � 10R� and the eventual stagnation of the wind and reaccretion of material back onto the stellar surface. (b) Gray-scale plot of the scaled velocity
gradient in cgs units for ! ¼ 0:85. In the time interval between t ¼ 150 and 300 flow times, a kink in the velocity gradient is clearly visible, with the kink location at
rkink � 1:77R�. After t � 300, this kink solution becomes overloaded and unstable, eventually collapsing.

Fig. 7a Fig. 7b
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correspondingly faster and less massive reaccretion, followed
by a recovery to a slow-acceleration solution, as indicated in
Figures 3 and 4. In the very rapid, near-critical rotation case
! ¼ 0:90, no kink or flow stagnation forms, and the solution
relaxes more directly to the slow solution, as illustrated in the
bottom right panel of Figure 5.

Finally, Table 1 compares the radius of the kinks found in our
numerical simulations with the radius at which the nozzle anal-
ysis indicates a steep-acceleration solution can no longer bemain-
tained. For cases in which the mass flux set at the base ṁ ¼ ṁ0 ¼
n(x ¼ 0) is above the CAK value, i.e., ṁ ¼ n(x ¼ 0) > 1, this
occurs at a radius xk where a declining nozzle function falls back
to n(xk ) ¼ ṁ. The corresponding radius rkink;nozzle agrees quite
well with the kink locations found from the hydrodynamic sim-
ulations, rkink;hydro. Note also that the requirement n(x ¼ 0) ¼
(4/9)/(1� !2) > 1 implies rotation rates of ! >

ffiffiffi
5

p
/3 � 0:745,

representing the onset for either possible kink solutions or a
switch to a slow-acceleration solution.

5.3. Results for Slow-Acceleration Initial Condition

A central finding of the dynamical simulations is that moder-
ately fast rotationmodels 0:75 < ! < 0:85 form fast-acceleration
kink solutions instead of the slow-acceleration solutions predicted
from steady state analyses. But since the nonlinear character of
the flow equations allows more than one solution, this raises the
question of whether slow-acceleration solutions in this regime
might also be stable attractors, perhaps for initial conditions that
are closer to their slower outflow form than the fast, nonrotating
model used for the initial conditions in the simulation models
discussed above. For each of the specific rotation cases in this
transitional range, ! ¼ 0:75, 0.80, 0.82, and 0.84, we thus re-
compute simulations that instead use an initial condition set to
the slow-acceleration steady state found for the faster, near-
critical rotation case ! ¼ 0:9.

For the ! ¼ 0:75 case, we find that the model again relaxes to
a fast solution with an outer-wind kink at rkink � 10R�. Steep-
acceleration solutions are also recovered in all the slower rota-
tion models as well.

However, as shown in Figure 8, for the ! ¼ 0:80, 0.82, and
0.84 cases the final states now do approach slow-acceleration
solutions, apart from a persistent peculiar upward kink near the
outer boundary (i.e., for x > 0:9 in Fig. 8). Suchmodels also show
persistent small-scale fluctuationswith an amplitude of ca. 10% in
the mass flux, apparently reflecting some difficulty for the numer-
ical solution to relax to a subcritical flow solution in these cases.
The upward kink may stem from using a supercritical outflow
boundary condition for this slow-acceleration solution, which
does not become supercritical until far from the star.

Finally, even for this slow-acceleration initial condition, the
peculiar case ! ¼ 0:85 still forms an overloaded condition with
flow stagnation and reaccretion, after which it never fully recov-
ers a steady outflow result.

5.4. 1D Results for Equatorial Density

These results also allow us to identify the radial variation of
the relative density enhancement in the slow equatorial wind of
a rotating star, compared to the nonrotating solution that applies
to the polar wind. Here we are ignoring gravity darkening and
oblateness effects, as well as any bistability in the line-driving pa-
rameters between the polar and equatorial wind. From the analysis
of x 3, the relative density enhancements are given by the ratios of
the quantity ṁ/w1=2 between the rotating and nonrotating models.

The dashed curves in Figure 9 show the spatial variation of
this density enhancement for rotatingmodels with! ¼ 0:8, 0.86,
0.9, and 0.95. Note that the enhancements are a few factors of 10,
not insignificant but not sufficient to reproduce the inferred
densities of B[e] disks, which are factors of the order of 104 or
more denser than a typical polar wind outflow (Zickgraf et al.
1985; Kraus & Miroshnichenko 2006). Inclusion of bistability
effects could give about another factor of a few by increasing the

TABLE 1

Comparison of Kink Locations

!

rkink;hydro
(R�)

rkink;nozzle
(R�)

0.80..................... 4.18 4.54

0.82..................... 2.95 3.03

0.83..................... 2.52 2.54

0.84..................... 2.12 2.16

0.85..................... 1.77 1.86

Note.—The quantities rkink;hydro and rkink;nozzle
are the kink locations found from numerical hydro-
dynamic models and from the semianalytic nozzle
analysis, respectively.

Fig. 8.—Final wind velocity law (flow speed over escape speed, v/vesc, vs.
scaled inverse radius x) for ! ¼ 0:8, 0.82, and 0.84 simulations that used the
! ¼ 0:9 final state (dashed line) as an initial condition. The solid lines now
approximate the expected slow-acceleration solution, except for an unexplained
uptick in velocity gradient near the right boundary, x > 0:9.

Fig. 9.—Density enhancement of slow wind solutions with rapid rotation
rates, ! ¼ 0:8, 0.86, 0.9, and 0.95, relative to a nonrotating wind with the same
wind parameters. Dashed curves show analytic results, while solid curves show
those obtained from numerical simulations using VH-1.
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equatorial mass loss around the cooler, gravity-darkened equa-
tor, thus yielding an overall enhancement of the order of 102

(Lamers & Pauldrach 1991; Pelupessy et al. 2000). Significantly
higher enhancement would require an unrealistically low � to
increase further the equatorial mass flux and/or assuming an
equatorial surface rotation within a sound speed of the critical
(orbital) speed. In the latter case, minor disturbances (e.g., pul-
sations) in the stellar envelope or photosphere could instead
eject material into an orbiting, Keplerian disk (Lee et al. 1991;
Owocki 2005), obviating the need to invoke any central role for
radiatively driven outflow solutions.

6. SUMMARY AND CONCLUSIONS

Using an analytic approach combined with numerical hydro-
dynamic simulations, we investigate the reasons for the switch
from a steep to shallow acceleration in 1D line-driven stellar wind
models as stellar rotation rates are increased beyond a threshold
value of ! � 0:745. The results indicate that the cause of this
switch is the overloading of the base mass-loss rate beyond the
point-star CAK value. The latter represents the maximal allowed
mass loss for which there can be a monotonically accelerating
flow speed throughout the entire wind. Furthermore, the finite-
disk correction factor (FDCF) reduces the driving effectiveness
near the stellar surface and thus reduces the maximal mass loss
that can be initiated there. This reduction allows the outer wind to
maintain a positive acceleration even as other effects (e.g., cen-
trifugal reduction in effective gravity near the surface) allow for
an increase of the base mass loss from its FDCF value.

This problem of wind overloading at large rotation rates was
first noticed by Friend & Abbott (1986), who found indeed that
beyond some threshold rotation rate, the supercritical, steep-
acceleration solutions they were deriving could not be followed
beyond some finite radius. The contributions ofM. Curé and col-
laborators have since shown that this termination can be avoided
by switching to a shallow-acceleration solution. As rotation in-
creases beyond the threshold value of ! � 0:745, the base mass
loss becomes greater than the point-star CAKvalue, and so the only
globally accelerating solution possible is a shallow one with a
subcritical outflow.

However, an important lesson learned from our numerical
simulations is that the flow does not necessarily follow the so-
lution with a globally monotonic acceleration. We see that the
steady 1D solutions for rotating winds actually fall into four do-
mains. First, for no or low rotation rates (! < 0:745), the mini-
mum of the nozzle function is less than unity and occurs at the
stellar surface (x ¼ 0). This allows the flow to transition to a
supercritical outflow directly from the static surface boundary
and follow the steep-acceleration solution with a mass-loss rate
that is less than the point-star CAK value.

Next, there exits a ‘‘gray zone’’ for rotation rates between
! ¼ 0:745 and�0.86 where two different solutions are possible.
If we restrict ourselves to a strictly positive acceleration, w0 > 0,
then as rotation increases beyond ! � 0:745 the base mass loss
exceeds the point-star CAK value, and so the only globally accel-
erating solution possible is one with a shallow acceleration and a
mass-loss rate that saturates to the point-star CAK value. On the
other hand, if we provide a backup scaling for negative accel-
erations and investigate cases in which multiple local minima ap-
pear in the nozzle function, then overloaded situations in which
the square root term in equation (19) becomes negative lead to a
‘‘kink’’ and thus a negative-acceleration or coasting solution.
Moreover, for these new kink solutions, the multiple minima of
the nozzle function now give rise to mass-loss rates that exceed
the point-star CAK value.

This gray zone of kink solutions can be further divided into
two domains. For rotation rates between ! � 0:745 and �0.85,
the overloading of the wind is not too severe. The coasting solu-
tion can thus still reach large distances with a finite speed, so these
cases are able to approach a perfectly steady, time-independent
state, despite the presence of the discontinuity in slope at the kink.
On the other hand, for rotation rates of ! ¼ 0:85, the wind be-
comes strongly overloaded and eventually stagnates at some finite
radius. After enoughmaterial has piled up at this radius, it will fall
back as a ‘‘reaccretion front’’ toward the star. If the boundary con-
ditions are such that this material is allowed to fall through the
lower boundary, then it effectively disappears from the model
allowing the simulation to reestablish a wind outflowwith a slow-
acceleration solution (as in the ! ¼ 0:86 case).
For rotation rates greater than ! � 0:86, the global minimum

of the nozzle function is unity and occurs at large radii (x ¼ 1). In
order to satisfy the static surface boundary condition, the flow at
all finite radii should be subcritical (but still supersonic), so the
only solution possible is the shallow (�) acceleration solution,
with a mass-loss rate that has saturated to the point-star CAK
value.
It is also worth noting that since the nonlinear nature of the

flow equations allows more than one solution, slow-acceleration
solutions in the 0:75 < ! < 0:85 regime are also possible via a
change in initial conditions. By initializing the wind using the
slow-acceleration steady state found for the ! ¼ 0:9 case, it is
possible to achieve final states that do approach the expected slow-
acceleration solution (apart from a peculiar upward kink near the
outer boundary; see Fig. 8).
One should also add here a fewwords regarding the validity of

the Sobolev approximation for the slow-acceleration solutions.
Recall that for the usual case in which the broadening of the line
is set by the local ion thermal speed vth, the geometric width of
the local resonance with the radiation is about a Sobolev length,
lSob � vth /(dv/dr) (Sobolev 1960). Thus, in a supersonic flow,
this Sobolev length is of order vth /vT1 smaller than a typical
flow variation scale, such as the density/velocity scale height
H � j�/(d�/dr)j � v/(dv/dr). Therefore, while the flow speeds
for the slow-acceleration solutions are lower than those of the
steep-acceleration solutions, they are still supersonic throughout
nearly the entire wind, so the Sobolev approximation remains
quite appropriate.
As noted in x 1, it is important to keep in mind the limited

physical relevance of such 1D models. The 2D WCD simula-
tions of Owocki et al. (1994, 1996) and Cranmer &Owocki (1995)
serve as an example, showing that for moderately rapid rotation,
there can be a 2D flow pattern by which material from higher
latitudes is focused toward the equator through the WCD effect.
Depending on whether the material reaches the equator above or
below some ‘‘stagnation point,’’ it either drifts outward or falls
back toward the star. This simultaneous infall-plus-outflow be-
havior is not possible in a steady 1Dmodel but is a perfectly nat-
ural occurrence in a 2D simulation. There are also the issues of
oblateness, limb darkening, and the nonradial line force and how
these affect the latitudinal motion of the flow leading to inhibi-
tion of theWCD (Cranmer & Owocki 1995; Owocki et al. 1996;
Petrenz & Puls 2000). Finally, equatorial gravity darkening can
reduce the wind mass flux from the equator and lead to an equa-
torial wind density that is lower than near the poles (Owocki et al.
1996). A key point here is that 1D simulations represent a sort of
best-case scenario for the formation of a disk. Amove to 2D sim-
ulations shows that when the relevant physics (such as nonzero,
nonradial line forces and gravity darkening) are included, ma-
terial will tend to be channeled away from the equator and inhibit
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disk formation. Thus, if 1D simulations are incapable of produc-
ing equatorial densities capable of explaining those inferred in
B[e] supergiants, then 2D simulations will most likely not change
this.

Beyond even developing a 2D CAK-type model, there remain
key physical limitations not accounted for in this CAK formal-
ism. Two examples are the intrinsic, small-scale instability of line
driving, and multiple scattering effects. The former might well
disrupt a slow-acceleration solution, even though the CAK form
of such solutions seems from the present simulations to be a sta-
ble attractor. The latter places strict upper limits on the mass flux
that can be driven within a geometrically thin disk, since even
with ideally tuned line-driving parameters within a CAK model
(e.g., choosing an anomalously small CAK exponent � to en-
hance the expected CAK-type mass-loss rate), radiative driving
in the thin disk would generally be limited to one or two scatter-
ings before the photon escapes out of the disk plane (Owocki

2007). Thus, quite generally, radiative driving could not produce
a disk outflow that exceeds the single scattering limit. So, to the
extent that observational inferences of supergiant B[e] disks im-
ply a very dense medium (dense enough to form dust), it seems
more likely that these represent orbiting Keplerian disks, with
perhaps ablation flows off the disk surface producing the equa-
torial outflow inferred by observations of Doppler-shifted ab-
sorption troughs in UV resonance lines.
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APPENDIX

OUTER CRITICAL POINT LOCATION FOR SHALLOW SOLUTIONS WITH FINITE SOUND SPEED

Let us examine here a key issue regarding the location of the outer critical point for the shallow-acceleration solutions that appear for
rotation rates ! > 0:75. For the zero sound-speed limit (as analyzed in xx 2Y3), the radius of this critical point formally approaches
infinity, rc ! 1, or xc ! 1 in the scaled inverse radius coordinate x � 1� R� /r. This raises the issue of whether the numerical
hydrodynamic simulations (xx 4Y5) done with a finite outer boundary radius must use some sort of subcritical right boundary condition
(with one inward and one outward pointing characteristic), instead of the supercritical outflow boundary conditions (with two outward
characteristics) that are usually used in stellar wind simulations.

Note, however, that the hydrodynamic simulations presented above include a small but nonzero sound speed, characterized by the
dimensionless parameter ws � a2 /v 2esc � 4 ; 10�4. When this is included in the equation of motion (as in eq. [6]), the additional term on
the right-hand side has the scaled form 4ws /(1� x) (we are neglecting the additionalws /w term on the left-hand side of eq. [6]). The total
effective gravity used in the denominator of the nozzle function (see eq. [20]) then takes the form

g xð Þ ¼ 1� !2 1� xð Þ � 4ws

1� x
: ðA1Þ

Instead of declining monotonically as x increases, this now has a maximum at some finite radius, which in turn allows the nozzle
function to reach a minimum at some finite radius. In a model with a nonzero sound speed, this thus becomes the effective critical point
of the slow-acceleration solutions. Since wsT1, this minimum still occurs near xP 1, so to evaluate the location, it is convenient to
expand the FDCF about x ¼ 1. For a � ¼ 1 velocity law and � ¼ 1

2
, this gives

f xð Þ � 1þ 1� x

4
for x ! 1; ðA2Þ

which makes the nozzle function

n xð Þ� f 2 xð Þ
g xð Þ � 1þ 1� xð Þ=2

1� !2 1� xð Þ � 4ws= 1� xð Þ : ðA3Þ

We can easily solve for the critical location xc through

n0 xcð Þ ¼ 0: ðA4Þ

To lowest order in the small parameter w1=2
s � 0:02, we find

xc � 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws

!2 þ 1=2

r
� 1� 0:04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 þ 1=2
p ðA5Þ

which implies a critical radius of

rc

R�
¼ 25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ 1=2

p
ðA6Þ

The upshot of this is thus that the outer boundary radius used in our numerical models (Rmax ¼ 100R�) should be well above the
critical point (rcP 30:6R�) for even the shallow-slope solutions at high rotation rate. Thus, a pure supercritical outflow boundary condition
should indeed be appropriate for all the models computed here.
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