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ABSTRACT
Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line tran-

sitions. The wind is believed to adopt a unique critical solution out of the inÐnite variety of shallow and
steep solutions. We study the inherent dynamics of the transition toward the critical wind. A new
runaway wind mechanism is analyzed in terms of radiative acoustic (Abbott) waves, which are
responsible for shaping the wind velocity law and Ðxing the mass loss. Three di†erent Ñow types result
depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far
downstream, a single critical point forms in the Ñow, which is a barrier for Abbott waves, and the solu-
tion tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical
point, mass overloading results, and the critical point is shifted inward. This wind exhibits a broad, sta-
tionary region of decelerating Ñow, and its velocity law has kinks. Third, for perturbations even further
upstream, the overloaded wind becomes time-dependent and develops shocks and dense shells.
Subject headings : accretion, accretion disks È hydrodynamics È instabilities È stars : mass loss È

waves

1. INTRODUCTION

Radiation-driven winds that are accelerated by absorp-
tion and reemission of continuum photons in spectral lines
form an interesting class of hydrodynamic Ñows, termed
line-driven winds (LDWs). They occur in OB and Wolf-
Rayet stars and cataclysmic variables and probably in
active galactic nuclei and luminous young stellar objects.
These winds are characterized by a unique dependence of
line force on the velocity gradient in the Ñow. This causes a
new, radiative wave type.

The nature of these waves (hereafter Abbott waves) was
Ðrst discussed by Abbott (1980), who found two modes, a
slow, acoustic one propagating downstream and a fast,
radiative one propagating upstream. The critical point
found by Castor, Abbott, & Klein (1975, hereafter CAK)
from analysis of the stationary Euler equation is a barrier
for these waves, the same as the sonic point is to sound
waves. The intriguing property of Abbott waves is that they
propagate downstream slower than the sound speed, while
they propagate upstream at very large speeds, highly super-
sonically. The latter fact reÑects essentially the radiative
nature of Abbott waves.

No such upstream-propagating radiative mode was
found by Owocki & Rybicki (1986), who calculated the
GreenÏs function for winds driven by pure line absorption.
The explanation is that the pure absorption case suppresses
the radiative upstream mode since photons can propagate
only downstream. The radiative upstream mode returns
when line scattering is included (Owocki & Puls 1999).

The question arises for the physical interpretation of
Abbott waves. Do they represent a physical entity that is
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responsible for shaping the Ñow by communicating essen-
tial Ñow properties between di†erent points in the wind? In
particular, could Abbott waves be the prime cause for evol-
ution of LDWs toward a CAK-type, steady state solution?

The analysis by CAK of the steady state Euler equation
for LDWs has revealed an inÐnite family of mathematical
solutions but only one, hereafter the ““ critical solution,ÏÏ that
extends from the photosphere to arbitrary large radii. Other
solutions do not reach either inÐnity or the photosphere.
The former solutions are called shallow and the latter ones,
steep. The unique, critical wind starts as the fastest shallow
solution and switches smoothly to the slowest steep solu-
tion at the critical point.

The shallow wind solutions found by CAK are the analog
to solar wind breezes in that they are sub-Abbottic every-
where. They were abandoned by CAK because they cannot
provide the required spherical expansion work at large
radii. This exclusion of shallow solutions can be criticized in
di†erent respects : (1) The breakdown happens only around
300 stellar radii, where basic assumptions of the model
(Ñuid description, spherical symmetry, isothermality) may
become invalid. (2) Shallow solutions could be extended to
inÐnity by jumping at some large radius to a decelerating
wind branch. The latter was excluded a priori by CAK.
However, this jump can occur beyond a few stellar radii,
where the wind has already reached its local escape speed.
(3) For models of disk LDW, even the critical solution itself
does not extend to inÐnity and becomes imaginary beyond
a certain radius (Feldmeier & Shlosman 1999). Jumps to the
decelerating branch are unavoidable then.

With shallow solutions being valid stationary solutions,
the following question arises : what forces the wind to adopt
the critical CAK solution? Numerical aspects of this ques-
tion have been discussed by Feldmeier, Shlosman, &
Hamann (2001), who noted that outer boundary conditions
and a Courant time step that do not account for Abbott
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waves can set o† numerical runaway, often toward the criti-
cal solution.

In the present paper, we focus on a physical interpreta-
tion of Abbott waves, extending our previous work on this
subject (Feldmeier & Shlosman 2000). We show that these
waves are the prime driver of evolution of LDWs toward a
unique, steady state solution characterized by a speciÐc
velocity law and mass-loss rate. In particular, we Ðnd that
since this is the case for solar wind breezes, shallow solu-
tions can evolve because of waves that propagate upstream
to the wind base (the photosphere). As a new e†ect in
LDWs, Abbott waves ““ drag ÏÏ the solution in one preferred
direction, toward larger velocities. The wind becomes stable
when a critical point forms, through which outer pertur-
bations can no longer penetrate inward.

2. ABBOTT WAVES

2.1. W ind Model
Only wind acceleration due to a line force in Sobolev

approximation for radiative transfer is considered in this
paper. The large number of lines driving the wind is dealt
with using a CAK line distribution function. The latter is
characterized by a power-law index a, which lies between 0
and 1. The Sobolev force is proportional to

gl D
P

du nI
n
q
n
~a , (1)

where n is the unit vector pointing in the direction of the
surface angle element du, I is the frequency-integrated spe-
ciÐc intensity, and q is the Sobolev optical depth,

q
n
\ iovth

n Æ [n Æ ($¿)] , (2)

with rate-of-strain tensor mass absorption coefficient i,+¿,
and ion thermal speed The force proportionality con-vth.stant is Ðxed later in terms of the critical solution. Through

the line force depends on the streamline geometry. To+¿,
simplify, we take q in equation (1) out of the integral and
replace it by an average or equivalent optical depth in one
direction. SpeciÐcally, the latter is assumed to be the Ñow
direction. This approach corresponds to the CAK ““ radial
streaming approximation.ÏÏ For a planar Ñow with height
coordinate z, the line force becomes, assuming constant i
and vth,

glD F(v@/o)a , (3)

where v@\ Lv/Lz and the radiative Ñux F is a function of z.
Even this highly idealized line force depends in a nonlinear
way on the hydrodynamic variables v@ and o.

So far, the following assumptions were introduced : (1) the
line force is calculated in Sobolev approximation using (2) a
CAK line distribution function (without line overlap) and
(3) applying the radial streaming approximation for (4)
planar Ñow. To these, we add the following further assump-
tions : (5) The Ñux F is constant with z, but gravity g may
depend arbitrarily on z. This can serve to model winds from
thin, isothermal accretion disks, in which case g grows Ðrst
linearly with z and at large distances drops o† as z~2. Alter-
natively, with F and g being constants, one can model the
launch region of a stellar wind, but a well-known degener-
acy occurs here (Poe, Owocki, & Castor 1990). (6) Zero
sound speed is assumed, a \ 0, and (7) we Ðx Notea \ 12.that the Sobolev line force is independent of and there-vth

fore of a. LDWs are hypersonic, and except near the photo-
sphere, gas pressure plays no role. The one-dimensional
continuity and Euler equations are
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with constant We consider Ðrst stationary solutions,C0.ov\ const. A normalized quantity is intro-m\ov/o
c
v
cduced, where and are the density and velocity lawo

c
(z) v

c
(z)

of the critical wind, respectively, which is deÐned below.
Besides m, a second, new hydrodynamic variable, w@\ vv@, is
deÐned, and the Euler equation becomes

w@ ] g(z) [ CJw@/m\ 0 . (6)

The Ñux F was absorbed into the constant C. At each z,
equation (6) is a quadratic equation in with solutionsJw @,

Jw@\ 1

2Jm
(C^ JC2[ 4gm) . (7)

The velocity law v(z) is obtained from w@ by quadrature.
Solutions for which the minus (plus) sign applies are termed
shallow (steep). If m\ 1 (see below), shallow and steep solu-
tions exist from z\ 0 to O. If m[ 1, shallow and steep
solutions become imaginary in a certain z interval. In this
region, the line force cannot balance gravity g.DC/Jm

Within the family of shallow wind solutions, the mass Ñux
ov increases monotonically with terminal speed, while for
steep solutions, the trend is opposite. The largest mass Ñux
that keeps the solution everywhere real deÐnes the critical
wind Setting the square root in equation (7) to 0m

c
\ 1.

implies for C

C\ 2Jg
c

, (8)

where means gravity at the critical point of theg
c
\ g(z

c
)

critical solution. How is found? Di†erentiating the sta-z
ctionary Euler equation E[z, w@(z)]\ 0 with respect to z and

using at the critical point (crossing of solutions),LE/Lw
c
@ \ 0

one Ðnds

0 \ dE
dz

c
\ dg

dz
c

. (9)

Hence, the critical point coincides with the gravity
maximum. This is not an accident but expresses that the
critical point lies at the bottleneck of the Ñow, as for a Laval
nozzle (Abbott 1980). If the Ñux F varies with z, the gener-
alized area function depends also on F, and the critical
point no longer coincides with the gravity maximum (see
Feldmeier & Shlosman 1999 for examples). If g \ const, the
critical point degenerates, and every point in the Ñow
becomes critical. In stellar wind calculations, the correct
critical point location is found by including the Ðnite cone
correction factor for the stellar disk as an ““ area ÏÏ function
(Pauldrach, Puls, & Kudritzki 1986 ; Friend & Abbott
1986).

The wind solution becomes

w@\ g
c

m
A
1 ^

S
1 [ mg

g
c

B2
. (10)
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At the critical point, shallow and steep solutions with m\ 1
merge in such a way that the slope in passing from one to
the other is continuous. Staying instead on either shallow or
steep solutions introduces a discontinuity in Discon-v@@(z

c
).

tinuities in derivatives of hydrodynamic variables, termed
weak discontinuities, lie on Ñow characteristics (Courant &
Hilbert 1968). Characteristics are the space-time trajectories
of wave phases. Indeed, we Ðnd below that the critical point
is a barrier for Abbott waves.

It is at this point that the following question arises : which
solution does the wind adoptÈa shallow, steep, or critical
one? This issue will be resolved by discussing runaway of
shallow solutions. We shall Ðnd that Abbott waves are the
prime driver of this evolution.

2.2. GreenÏs Function
We derive the GreenÏs function for Abbott waves in

Sobolev approximation. The GreenÏs function gives the
response of a medium to a localized delta function pertur-
bation in space and time and is complementary to the har-
monic dispersion analysis of Abbott (1980) and Owocki &
Rybicki (1984). Since localized perturbations contain many
harmonics, a GreenÏs function describes wave interference.
This is clearly seen for surface water waves, whose GreenÏs
function is known from Fresnel di†raction in optics (Lamb
1932, p. 386). For simplicity, we consider only a single, opti-
cally thick line, with Sobolev force (a 4 1),

gl\ A
Lv
Lz

. (11)

Density o was absorbed into the constant A. We assume
WKB approximation to hold (slowly varying background
Ñow) and consider velocity perturbations only. The charac-
teristic analysis in the next section will show that the Abbott
wave amplitude is v@/o ; hence, Abbott waves are not annihi-
lated by this restriction to velocity perturbations. The lin-
earized Euler equation for small perturbations is

L
Lt

dv(z, t)\ dgl(z, t)\ Adv@(z, t) . (12)

The GreenÏs function problem is posed by specifying as
initial conditions

dv(z, 0) \ d(z[ z0) . (13)

Multiplying equation (12) by e~ikz and integrating over z,
we get

L
Lt

dv(k, t)\ ikAdv(k, t) , (14)

where a bar indicates Fourier transforms, dv\ / dve~ikz dz.
The right-hand side was obtained by integration by parts,
assuming dv([O, t)\ dv(O, t)\ 0. This is shown a poste-
riori. The solution of equation (14) is

dv(k, t)\ beikAt , (15)

with constant b. Fourier transforming equation (13) from z
to k space,

dv(k, 0) \ e~ikz0 \ b , (16)

and

dv(k, t)\ eik(At~z0) . (17)

Fourier transforming back to z space, we get

dv(z, t) \ 1
2n
P
~=

=
dk eikzeik(At~z0)\ d(z[ z0 ] At) . (18)

Therefore, the initial delta function propagates without dis-
persion toward smaller z at an Abbott speed [A. Further-
more, dv\ 0 at z\ ^O, as assumed. Since no wave
dispersion occurs, the same Abbott speed A is also obtained
by considering harmonic perturbations. Inserting dv\

in equation (12) gives as phase and group speeddvei(kz~ut)

u
k

\ du
dk

\ [A . (19)

The GreenÏs function G is deÐned by (F an arbitrary
function)

F(z, t) \
P
~=

=
dz@G(z[ z@, t)F(z@, 0) . (20)

From equations (13) and (18),

G(z, t) \ d(z] At) , (21)

a result Ðrst obtained by Owocki & Rybicki (1986).
The present case of optically thick lines only corresponds

to a \ 1. An explicit expression for the Abbott speed is not
relevant then : opposed to all cases a \ 1, a \ 1 poses no
eigenvalue problem for m. We return therefore to a \ 12.

2.3. Abbott Wave Characteristics
Besides a harmonic and GreenÏs function analysis, a char-

acteristic analysis can be given for Abbott waves. The latter,
especially, is not restricted to linear waves. Inserting C from
equation (8), the equations of motion (eqs. [4] and [5])
become (dots indicate time derivatives)

o5 ] vo@] ov@\ 0 , (22)

v5 ] vv@ ] g(z) [ 2!
Sv@

o
\ 0 , (23)

where we introduced the constant

!\ Jg
c
o
c
v
c

. (24)

To bring these equations into characteristic form, we Ðrst
write the continuity equation formally as K(o, v)\ 0 and
the Euler equation as E(o, v) \ 0. For nonlinear, Ðrst-order
systems of partial di†erential equations, K \ 0 and E\ 0,
in two unknown variables o and v, the latter being functions
of coordinates t and z, the characteristic directions or
speeds a are determined by (Courant & Hilbert 1968, p. 304)

K [ aKo5 ] Ko{ [ aK
v5
] K

v{
[ aEo5 ] Eo{ [ aE

v5
] E

v{

K
\ 0 , (25)

where etc. We use the symbol a,Ko{ \ LK/Lo@, E
v5
\ LE/Lv5 ,

hitherto reserved for the sound speed, also for characteristic
speeds. The meaning should be clear from the context.
Inserting K and E in equation (25), we get

;[a ] v

0

o

[ a ] v[ !
Jov@

;
\ 0 ;

(26)
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hence,

a
`

\ v, a~4 A\ v[ !
Jov@

, (27)

in the observers frame. The Abbott speed is again denoted
A. In the comoving frame, anda

`
\ 0 a~\ [!/(ov@)1@2.

The downstream (positive) slow wave mode corresponds to
sound waves. The upstream (negative) fast mode is of radi-
ative origin.

A simple, heuristic argument can be given for the
occurrence of Abbott waves. Consider a long-scale pertur-
bation of a stationary velocity law. At the node where the
velocity gradient gets steepened, the Sobolev line force
increases. The gas is accelerated to larger speeds ; hence, the
node shifts inward. Similarly, the node where the velocity
law becomes shallower shifts inward. The node shift corre-
sponds to phase propagation of a harmonic wave.

Next, we bring the equations of motion into character-
istic form. To this end, the Euler equation is quasi-
linearized by di†erentiating it with respect to z (Courant &
Hilbert 1968), introducing a new, fundamental variable
f\ v@,

f 5] vf @ ] f 2[ !
Jfo

A
f @ [ f

o@
o
B

] g@ \ 0 . (28)

Rebracketing and multiplying with o,

of 5] oAf @ ] of 2] !
Jfo

fo@] og@\ 0 . (29)

Using the continuity equation,
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The Euler equation in characteristic form is therefore
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t
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z
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with A from equation (27). We assume that WKB approx-
imation applies, i.e., that the temporal and spatial deriv-
atives on the left-hand side are individually much larger
than the right-hand side ; hence, the latter can be neglected.
In a frame moving at speed [A, the function v@/o is con-
stant and can be interpreted as a wave amplitude. Note that
v@/o is inversely proportional to the Sobolev line optical
depth, indicating that Abbott waves are indeed a radiative
mode.

Introducing f in the continuity equation puts it into char-
acteristic form,

(L
t
] vL

z
)o \ [fo . (32)

Here, fo is an inhomogeneous term. WKB approximation
cannot be assumed here since f may vary on short scales.
The wave amplitude o is no longer constant along v charac-
teristics but changes according to this (ordinary) di†erential
equation. Since gas pressure p scales with density, this equa-
tion shows that the outward mode corresponds to sound.

For stationary winds, the Abbott speed in the observers
frame becomes (a \ 12),

A\ v
A
1 [

S g
c

mw@
B

\ v
A
1 [ 1

Jmw@/w
c
@
B (33)

since from equations (7) and (8). With thew
c
@ \ g

c
A

c
\ 0,

critical point is a stagnation point for Abbott waves. For
shallow winds, m\ 1 and hence, A\ 0 andw@/w

c
@ \ 1 ;

Abbott waves propagate upstream from any z to the photo-
sphere located at z\ 0. Shallow solutions are, therefore,
sub-Abbottic and are the analog to solar wind breezes. For
steep solutions, from equation (10). Hence,(mw@/w

c
@ )1@2[ 1

A[ 0, and steep solutions are super-Abbottic. Once the
wind has adopted a steep solution, the Ñow can no longer
communicate with the wind base : steep solutions cannot
evolve by means of Abbott waves.

2.4. Negative Velocity Gradients
A surprising result occurs when we allow for negative

velocity gradients, v@\ 0, somewhere in the wind. This cor-
responds to Ñow deceleration, not necessarily to accretion
instead of wind. The Sobolev force is blind to the sign of the
velocity gradient. All that is important is the presence of a
velocity gradient to Doppler-shift ions out of the absorption
shadow of intervening ions. Hence, a natural generalization
of the Sobolev line force is

gl \ 2!
S o v@ o

o
. (34)

This holds for a purely local force. However, if v@\ 0, the
velocity law is nonmonotonic, and multiple resonance loca-
tions occur. Radiative transfer is no longer local since
photons are absorbed and scattered at di†erent locations.
The incident Ñux is no longer determined by the photo-
spheric Ñux F alone, but forward and backward scattering
has to be accounted for. The constant C becomes frequency-
and velocity-dependent. Rybicki & Hummer (1978) intro-
duced a generalized Sobolev method for nonmonotonic
velocity laws in which the radiation Ðeld is found by iter-
ation. This introduces interesting, nonlocal e†ects into
Abbott wave propagation (action at a distance). We post-
pone such an analysis to a future paper and proceed here in
a simpler fashion. Together with the oppositeglD o v@ o1@2,
extreme 0)]1@2 is treated. In the latter force, allglD [max (v@,
radiation is assumed to be absorbed at the Ðrst resonance
location, where necessarily v@[ 0. The line force according
to Rybicki & Hummer (1978) lies in between these two
extremes.

Repeating the above steps for these generalized line
forces, the Euler equation maintains its characteristic form,

(L
t
] AL

z
)
v@
o

\ [ g@
o

,

with Abbott speed A\ v[ !/(1/2ov@) for v@[ 0 and

A\
4
5
6

0
0
v]

!
J[ov@

, if glD J o v@ o ,

v , if glD J max (v@, 0)

(35)

for v@\ 0. Therefore, if the velocity gradient is negative,
Abbott waves propagate downstream, with a positive (or
zero) comoving frame velocity along all solution types,
whether shallow, steep, or critical. This is peculiar since
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Abbott waves appeared so far as upstream mode. (Note that,
for 0)]1@2, the line force drops out of the EulerglD [max (v@,
equation if v@\ 0. Both wave modes become ordinary
sound then.) We conclude that regions with v@\ 0 cannot
communicate with the wind base.

3. ABBOTT WAVE RUNAWAY

3.1. Method
In the remainder of the paper, we study wave propaga-

tion in LDWs numerically using a standard time-explicit
Eulerian grid code (van Leer advection on staggered grids).
NonreÑecting Riemann boundary conditions for Abbott
waves are used (Feldmeier et al. 2001). As an inner bound-
ary, z\ 0.1 is chosen to avoid negative speeds when Abbott
waves leave the mesh at the wind base ; numerical artifacts
may result when the v characteristic changes its direction.
For gravity, we assume g \ z/(1 ] z2), with a maximum at
z\ 1. Since g and z are normalized, so are v and t. Steep
solutions are of no further interest here since they are super-
Abbottic and, therefore, numerically stable. Furthermore,
since they start supersonically at the wind base, they are
unphysical. We are left with shallow winds, which can
evolve toward the critical solution by means of Abbott
waves. Shallow solutions are numerically unstable if pure
outÑow boundary conditions are used. The mechanism of
this runaway is not easy to analyze because of numerical
complications in the vicinity of the boundary, where the
nature of the di†erence scheme changes.

To clearly separate e†ects of boundary conditions from
wave dynamics, we introduce controlled, explicit pertur-
bations in the middle of the calculational domain.

3.2. Mechanism of the Runaway
Figure 1 demonstrates the result derived above, that posi-

tive and negative velocity slopes propagate in opposite
directions. The initial conditions are a shallow velocity law

FIG. 1.ÈEvolution of a triangular wave train in a shallow wind (dotted
line). For clarity, the velocity law is plotted with a negative, vertical o†set
that increases with time. The dashed lines show the shallow solution with
m\ 1 and the critical solution.

that is perturbed by a triangular wave train. The subsequent
evolution of this wave train follows from the kinematics of
the velocity slopes. In strictly mathematical terms, the pla-
teaus that form in Figure 1 correspond to centered rarefac-
tion waves. We postpone such an analysis to a forthcoming
paper. The essential result from the Ðgure is that the wind
speed in the sawtooth evolves asymmetrically, toward
larger values.

T he whole sawtooth pattern moves upstream as an Abbott
wave. This is of a prime importance for our understanding
of the observed runaway.

Namely, if a perturbation is fed into the wind contin-
uously over time, the whole inner wind is eventually lifted
toward larger speeds and mass-loss rates. The same is true
for the outer wind, Ðrst directly by the runaway and,
second, as a consequence of the accelerated inner gas propa-
gating outward.

We consider a coherent sinusoidal velocity perturbation
of period P and maximum amplitude S, which is fed into the
Ñow at a Ðxed location z. The fundamental hydrodynamic
variables used in the code are o and ov. After each time step
dt, perturbations

ov] ov] odv, o ] o(1[ dv/ oA o ) , (36)

with

dv\ dt
2nS
P

cos
A2nt

P
B

(37)

are applied to ov and o on a single mesh point. The density
Ñuctuations follow from the continuity equation do/
o B[dv/ oA o . For linear waves, the observers frame
Abbott speed is AB [1.05 at for m\ 0.8.z

e
\ 2

For sufficiently small amplitudes S, v@ remains positive,
and Abbott waves propagate in a stable fashion toward the
wind base. This is shown in the left-hand panel of Figure 2
for P\ 1 and S \ 0.04. Doubling the perturbation ampli-
tude to S \ 0.08 implies wind runaway toward the critical
solution, as is shown in the right-hand panel of Figure 2.
The wind converges to m\ 1 everywhere (not shown).
Instead of adopting the critical, accelerating branch, the
velocity law jumps at to the decelerating branch.z[ z

eThis is even true for the converged, stationary solution as
t ] O. (The velocity slope is so mildly negative for t ] O
that the wind speed is almost constant above Wez

e
\ 2.)

add some further remarks on this issue below.
The runaway results from the occurrence of negative

velocity gradients. During excitation phases during which
v@\ 0, the resulting line force perturbations are not suffi-
ciently negative to compensate for positive line force pertur-
bations during phases where v@[ 0. Net acceleration of the
wind results over a full excitation cycle as a consequence.

Figure 3 shows again the runaway time series of Figure 2,
with subsequent snapshots displaced vertically for clarity.
During the negative perturbation half-cycle, nega-[dv(z

e
),

tive velocity slopes propagate outward from below andz
emerge with positive slopes propagating inward from above

The merging slopes mutually annihilate. After a timez
e
.

P/2, the velocity law is left largely unaltered in presence of
the perturbation. This causes the dense spacing of curves in
Figure 2, especially at once every perturbation cycle.z[ z

e
,

On this rather Ñat velocity law, a positive perturbation ]dv
is added during the next half-cycle. Here, inner, positive
slopes propagate inward and separate from outer, negative
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FIG. 2.ÈL eft : Stable Abbott wave propagation along a shallow velocity law. A sinusoidal perturbation with amplitude S \ 0.04 and period P\ 1 is
applied at Right : Abbott wave runaway if the amplitude is doubled to S \ 0.08.z

e
\ 2.

slopes, which propagate outward. Obviously, runaway is
caused by positive perturbations, but its deeper origin is
that negative perturbations are self-annihilating and cannot
balance positive ones.

The runaway terminates when comes to lie on thez
ecritical solution and Abbott waves can no longer propagate

inward.

FIG. 3.ÈRunaway time series from Fig. 2, shown with a constant verti-
cal displacement between snapshots. The dashed lines show phases where
negative velocity perturbations are applied at leading to self-z

e
,

annihilating slopes.

The velocity gradient at is then still negative and inz[ z
emost of our simulations remains negative at all times : at z

e
,

the wind jumps to the decelerating branch with m\ 1,
which causes a kink in v(z). Runaway perturbations above

would be required to establish a critical, acceleratingz
evelocity law in the outer wind. For certain combinations of

model parameters, we Ðnd instead a critical solution with
v@[ 0 over the whole mesh. The near plateau above z

Aevolves then toward larger speeds, and the velocity kink
propagates outward, eventually leaving the mesh. We
believe that this is an artifact caused by boundary-induced
numerical runaway (Feldmeier & Shlosman 2000). The
latter can even occur when nonreÑecting Abbott boundary
conditions are used, via non-W KB (standing?) waves ; our
Riemann boundary conditions were formulated to annihi-
late WKB waves only. We prefer the situation v@\ 0 for

over any numerical runaway that would assist thez[ z
epresent, physical runaway in reaching the critical solution.

A future analysis of outer boundary conditions has to
clarify this issue of the outer wind velocity law.

We can still test the stability of the full, critical solution,
as is done in Figure 4. Above the critical point, perturbation
phases with v@[ 0 and v@\ 0 combine here and propagate
outward as a smooth, marginally stable Abbott wave.

3.3. Stationary Overloaded W inds
So far, we assumed that wind perturbations are located

above the critical point. We consider now the opposite case,
z
e
\ z

c
.

Figure 5 shows the wind velocity law resulting from a
perturbation location on the critical solution. Az

e
\ 0.8

period P\ 0.3 was chosen. A stationary wind with a broad
deceleration region v@\ 0 develops. Abbott waves propa-
gate outward from through the decelerating wind. Sincez

ethe CAK critical point, which is the bottleneck of the Ñow,
lies in the deceleration regime, the present solution should
be overloaded. Indeed, the mass-loss rate is found to be
m\ 1.05.
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FIG. 4.ÈCritical CAK solution, stable with respect to Abbott waves
excited above the critical point. Perturbation phases with positive and
negative v@ combine to an outward propagating, harmonic Abbott wave.

This result is readily understood. The Ñow at is stillz
esub-Abbottic because Runaway to larger v occursz

e
\ z

c
.

until inward propagation from becomes impossible. Thez
evelocity at is then everywhere larger than the criticalz\ z

espeed. The runaway stops when the inward Abbott speed

FIG. 5.ÈVelocity law for a wind with harmonic perturbation at z
e
\

below the critical point The wind converges to a stationary,0.8, z
c
\ 1.

overloaded solution. The dotted line shows the initial conditions, the criti-
cal CAK solution.

becomes zero in the observers frame. We are interested in a
stationary solution ; hence, A\ 0 in equation (33), implying

The square root in equation (10) has to vanishmw@ \ g
c
.

then, hence m\ g
c
/g.

So far, we restricted ourselves to and m\ 1, butg \ g
ccritical points can also occur along overloaded solutions. In

this case, and the square root in equationm\ g
c
/g(z

c
) [ 1,

(10) becomes imaginary at Remember that refersz[ z
e
. g

cto gravity at the critical point of the critical solution, which
is the maximum of g. Hence, for any other pos-g(z

c
) \ g

csible critical point. The perturbation site stops communi-z
ecating with the wind base only when it becomes a critical

point itself. At the overloaded wind jumps to the deceler-z
e
,

ating branch, resulting in a kink in the velocity law. This
kink has all the attributes of a critical point. Especially, as
an Abbott wave barrier, it shuts o† communication with the
wind base.

It is easily seen that a critical point at would implyz\ z
ethat is already super-Abbottic, which cannot happenz

eduring runaway. Since g(z) is a monotonically growing func-
tion with a maximum the perturbation site is theg

c
, z

e
\ z

cÐrst one that becomes critical to Abbott waves on the evolv-
ing overloaded solution. We emphasize that the amount of
overloading is solely determined by z

e
.

At some height above the gravity maximum, the deceler-
ating solution jumps back to the accelerating branch, giving
a second kink : the wind has overcome the bottleneck and
starts to accelerate again. In the present wind model, the
(imaginary, overloaded) solution becomes real again at z\

being the location where the solution becomes Ðrst1/z
e

(z
eimaginary). For the overloading is m\ 1.025, andz

e
\ 0.8,

the wind can start accelerating again at z\ 1.25. In the
simulation, however, m\ 1.05, and the second kink occurs
at z\ 1.6. The discrepancy in m can be attributed to mesh
resolution, which blurs out This leaves still unansweredz

e
.

why the wind ““ waits ÏÏ so long before it starts accelerating
again.

Furthermore, starting with a shallow wind as initial con-
ditions instead of a critical wind, the simulation converges
again to an overloaded solution. However, the jump from
the decelerating back to the accelerating branch does not
terminate on the steep but already on the shallow overload-
ed solution with m\ 1.05. This is a numerical artifact
caused by nonreÑecting, outer boundary conditions, which
try to maintain shallow solutions. As above, we prefer this
situation over any boundary-induced, numerical runaway.

A third kink may occur. For realistic radiative Ñuxes
above accretion disks, we Ðnd that at still larger distances
from the disk, the line force drops below absolute gravity
for all solution types (Feldmeier & Shlosman 1999).
Another jump to the decelerating branch is unavoidable.
Since the local wind speed is much larger than the local
escape speed, the velocity law stays essentially Ñat above
this kink.

3.4. T ime-dependent Overloaded W inds
Already a minor increase in the mass-loss rate causes a

broad deceleration region. This is a consequence of g(z)
having a broad maximum at Integrating w@(z)\ vv@z

c
.

numerically, we Ðnd that for If isv(1/z
e
) \ 0 z

e
\ 0.660. z

estill smaller, the gas starts to fall back toward the photo-
sphere before it reaches and collides with upward-1/z

estreaming gas. A stationary solution is no longer possible.
Figure 6 shows, for that an outward propagatingz

e
\ 0.5,
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FIG. 6.ÈVelocity v and mass Ñux m of a wind perturbed at z
e
\ 0.5.

During each perturbation cycle, gas falls back toward the photosphere and
collides with upward-streaming gas. Shocks form and propagate outward.

sequence of shocks and dense shells form. The shock
spacing is determined by the perturbation period.

As a technical comment, we add that the latter simulation
tends to develop extremely strong rarefactions and, corre-
spondingly, very large velocities. The latter cause the
Courant time step to approach zero. This is a well-known
artifact of the power-law form of the CAK line force, glPimplying as o ] 0. The true line force reaches(v@/o)a, gl] O
instead a Ðnite maximum in a Ñow that is optically thin
even in very strong lines (Abbott 1982). This is achieved by
truncating the line distribution function (Owocki, Castor, &
Rybicki 1988). Using a simpler approach that suffices for
the present purposes, we simply truncate m at large values.

Even for implying negative speeds, overload-z
e
\ 0.660

ing is small, only 9% above the critical CAK value
(m\ 1.088). This shows that the CAK mass-loss rate is a
signiÐcant upper limit for mass-loss rates in LDWs, with or
without mass overloading. If overloading occurs, it should
be detectable only via broad, decelerating Ñow regions.

It is important to distinguish the present runaway from
the well-known line-driven instability (Lucy & Solomon
1970 ; Owocki & Rybicki 1984 ; Lucy 1984), which leads to
strong shocks and dense, narrow shells in the wind. For
perturbations longer than the Sobolev scale, the instability
can be understood as a linear process in second-order
Sobolev approximation, including curvature terms v@@. By
contrast, runaway occurs already in Ðrst-order Sobolev
approximation, yet Ðnite perturbations are required to
achieve v@\ 0.

3.5. Triggering Perturbations
We discuss the following topics related to triggering :

Amplitudes.ÈStill, even perturbations with small ampli-
tudes can lead to runaway if their wavelength is sufficiently

short to cause negative v@. One expects, however, that dissi-
pative processes like heat conduction prevent runaway for
short wavelength perturbations.
Coherence.ÈIn a hydrodynamic instability, a feedback
cycle ampliÐes small initial perturbations. Even pertur-
bations of short duration trigger unstable growth. By con-
trast, the present wind runaway requires a continuously
maintained perturbation seed. No feedback occurs. The
runaway is a pure wave feature caused by the peculiar v@
asymmetry of the line force.Perturbations of short duration
lead to a localized runaway. The wind is shifted toward
larger v and m within a small z interval. If the perturbation
ceases, so does the runaway. The region of increased v and
m propagates upstream as an Abbott wave and eventually
lifts the wind base to a stable shallow solution with slightly
higher m. Successive Abbott waves lift the wind until the
critical or an overloaded solution is reached.
Surrounding medium.ÈOne expects that mismatches at the
outer boundary, where the wind propagates into a medium
of given properties, create perturbations that can trigger
runaway. This is supported by the fact that at large z the
velocity law is almost Ñat, and even small-amplitude pertur-
bations can cause v@\ 0. The Abbott speed is large at large
z since AD 1/(v@)1@2 ; hence, perturbations propagate inward
quickly. We performed tests with the outer boundary at
z\ 40. Inherent interpolation errors are sufficient then to
set o† boundary runaway.
Other sources.ÈInner wind perturbations could occur
because of prevalent shocks from the line-driven instability
(Owocki et al. 1988). The critical point usually lies close to
the sonic point (Owocki & Puls 1999 ; Feldmeier & Shlos-
man 1999), and it is therefore not easy to contemplate
strong shocks below the critical point. This means that per-
turbations at large and not at small z dominate the runaway
and drive the wind to a critical solution. Hence, overloaded
winds formed by internally generated perturbations should
be rare.

3.6. Critical Points and Mass-L oss Rate
We discuss here some general issues related to critical

points and mass-loss rates in di†erent types of stellar winds.

HolzerÏs wind laws.ÈThe idea that upstream, inward propa-
gating waves adapt the wind base to outer (boundary) con-
ditions is fundamental to solar wind theory. From this grew
the recognition that an outward force that is applied above
the sonic (critical) point does not a†ect the mass-loss rate
but only accelerates the Ñow, whereas a force applied below
the sonic point increases the mass-loss rate but has a van-
ishing e†ect on terminal wind speeds (Leer & Holzer 1980 ;
Holzer 1987). These ““ wind laws ÏÏ have proven to be of
interest for cases far beyond the coronal winds for which
they were Ðrst applied. We refer to Lamers & Cassinelli
(1999) for a detailed discussion.

Most relevant to us is the case of a force applied in the
subcritical wind region, causing enhanced mass loss. For
coronal winds, the subsonic region has essentially a baro-
metric density stratiÐcation. Any extra force assisting the
pressure gradient helps to establish a larger scale height.
From the continuity equation, a shallower velocity gradient
results, although the terminal speed is hardly a†ected. The
corresponding situation, analyzed by us for LDWs, is even
simpler. No outward force occurs besides line driving. Our
choice of zero sound speed emphasizes that the barometric
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stratiÐcation plays no role for mass-loss runaway or for
establishing an overloaded solution. Overloaded LDW
solutions have a steeper velocity gradient than the critical
solution, as can be seen from equation (7). Physically, a
steeper velocity gradient is required to create a generalized
critical point below the CAK critical point. In LDWs, a
critical acceleration w@\ vv@, not a critical speed v, is
adopted at the critical point and prevents further Abbott
wave runaway.
Physical relevance of critical points.ÈThe physical relevance
of the CAK critical point was questioned by Lucy (1975,
1998), arguing that it may be an artifact of Sobolev approx-
imation. Holzer (1987, p. 296) doubts that critical points,
i.e., singularities of the Ñow equations, generally coincide
with those points beyond which ““ information relevant to
the acceleration of the wind ÏÏ can no longer be transported
upstream. We have tried in the present paper to reestablish
a more traditional viewpoint (Courant & Friedrichs 1948 ;
Courant & Hilbert 1968), namely, that a critical point as a
mathematical singularity leaves certain derivatives of Ñow
quantities undetermined. This is only possible along charac-
teristics, which are the space-time trajectories of the speciÐc
waves in the problem. This establishes the transonic (or
trans-Abbottic, etc.) nature of the critical point. Similarly,
one can argue that the critical point is a singularity because
di†erent solution branches cross there. Hence, by passing
continuously from one branch to another (actually, by
staying on a certain branch), higher order or weak discon-
tinuities appear in the Ñow properties, for LDWs, in v@@.
Again, weak discontinuities propagate at characteristic
wave speed, making the critical point transonic.
Mass-loss rate as an eigenvalue.ÈWe remind the reader of a
deep di†erence between coronal and line-driven winds. For
coronal winds, the mass-loss rate is a free parameter within
wide margins and is determined by the base density. For
LDWs, on the other hand, the mass-loss rate is a unique,
discrete eigenvalue (CAK). This is a consequence of the line
acceleration depending on o ; see Lamers & Cassinelli
(1999).
Abbott speed and speed of light.ÈIn the literature, the pro-
pagation speed of radiative waves is occasionally identiÐed
with the speed of light. This is not true in general : the
Abbott speed and, in magnetized Ñows, the speed areAlfve� n
smaller than the speed of light. To make the point totally
obvious, note that the di†usion speed of photons through
stellar interiors is much smaller than the speed of light. The
basic cause is here the same as for Abbott waves : optical
depths larger than unity.

3.7. Deep-seated X-Rays, Infall, and Mass Overloading
Besides adapting the wind base to outer Ñow conditions,

we Ðnd that Abbott waves can even lead to mass inÑow.
This seems like a novel feature of these waves, and it leads
to interesting observational consequences, like explaining
the formation of hard X-rays anomalously close to the sur-
faces of hot stars. Formation depths of r B 1.1 areR

*deduced from X-ray emission lines observed with the
Chandra satellite (for f Ori, see Waldron & Cassinelli 2001 ;
for f Pup, see Cassinelli et al. 2001). The favored model for
X-ray emission from hot stars is via strong shocks (Lucy
1982) from the deshadowing instability (Lucy & Solomon
1970 ; Owocki & Rybicki 1984). The shocks become strong-
est in collisions of fast clouds with dense gas shells

(Feldmeier, Puls, & Pauldrach 1997). From theoretical
arguments (line drag e†ect ; Lucy 1984) and numerical simu-
lations, it appears that this shock scenario cannot explain
X-rays originating from the small heights mentioned above.

Howk et al. (2000) suggest gas infall as possible origin of
X-rays from near the photosphere. They consider a ballistic
model of stalled wind clouds falling back toward the star to
explain the hard X-rays observed from q Sco (Cassinelli et
al. 1994). At any instant, B10% of the mass Ñux from the
star resides in numerous, º1000, clouds that barely reach
distances of r \ 2 before falling back inward. The overallR

*resemblance of this cloud model with time-dependent wind
overloading as shown in Figure 6 is striking. In the latter
case, the overloading is sufficiently mild that upstreaming
gas can push downfalling clumps outward (which corre-
sponds to the drag force of ambient wind gas in Howk et
al.). Stronger overloading is achieved by shifting the Abbott
wave source farther inward but cannot be addressed using
our simple numerical approach. Clearly, two-dimensional
simulations are required to model true infall. A systematic
study relating the Howk et al. approach with ours is in
preparation.

Note that the critical point in stellar wind models
accounting for the Ðnite cone e†ect lies at r ¹ 1.1 R

*(Pauldrach et al. 1986). An overloaded wind starts to decel-
erate below the critical point and may already reach nega-
tive or infall speeds at similarly small heights. This shows
the relevance of overloading in understanding the Chandra
observations mentioned above. The topic of stalling and
backfalling gas has acquired some general attention in
recent papers on LDWs and is discussed in di†erent con-
texts by Friend & Abbott (1986), Poe et al. (1990), Koninx
(1992), Proga, Stone, & Drew (1998), and Porter & Skouza
(1999).

We Ðnally mention another idea related to overloaded
Ñows, which has played some role in sharpening our under-
standing of coronal winds. Cannon & Thomas (1977) and
Thomas (1982) challenged ParkerÏs (1958, 1960) theory of
the solar wind. They postulated an outward-directed, sub-
photospheric mass Ñux. In analogy with a Laval nozzle (see,
e.g., Chapman 2000, p. 127) into which a too strong mass or
energy inÑux is fed (Cannon & Thomas 1977 use the ter-
minology ““ imperfect nozzle ÏÏ instead of ““ overloading ÏÏ), the
solar outÑow should choke, creating shocks below the
nozzle throat or the critical point of the smooth (perfect
nozzle) Ñow. The shocks are responsible for heating the
chromosphere and corona, making the latter a conse-
quence, not the origin, of outÑow from the Sun. This model
was ruled out by Parker (1981) and Wolfson & Holzer
(1982).

Still, it leads to another interesting di†erence between
coronal and Laval nozzle Ñows on the one side and LDWs
on the other : the former two do not allow for continuous,
overloaded solutions ; instead, overloaded Ñows have
shocks in the vr plane where the critical point resides. By
contrast, overloaded LDWs show jumps in the critical vv@-r
plane, i.e., jumps in the wind acceleration, which correspond
to kinks in a continuous velocity law.

4. SUMMARY

We have studied the stability of shallow and steep solu-
tions for accretion-diskÈ and stellar line-driven winds. This
was done by introducing Ñow perturbations into the wind
at a Ðxed height. For sufficiently large perturbation ampli-
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tudes, negative velocity gradients occur in the wind and
cause runaway toward the critical solution. The origin of
this runaway is an asymmetry in the line force : negative
velocity gradients cause a force decrease that cannot
balance the force increase during phases in which the veloc-
ity law gets steepened. Net acceleration results over a full
perturbation cycle.

A new type of waves, termed Abbott waves, are exited by
the perturbations. They provide a communication channel
between di†erent parts of the wind and deÐne an additional
critical point in the Ñow, downstream from the sonic point.
Shallow solutions are subcritical everywhere ; steep solu-
tions are supercritical. Along shallow solutions, Abbott
waves propagate upstream toward the photosphere at a
high speed as a radiative mode and creep downstream at a
fraction of the sonic speed as an acoustic mode. The critical
solution is the one that switches continuously from the
shallow to the steep branch at the critical point.

Inward-propagating Abbott waves turn the local, asym-
metric response to velocity perturbations into a global
runaway toward the critical solution. The converged, steady
wind solution depends on the location of seed pertur-
bations. Three spatial domains can be distinguished : (1) If
perturbations are prevalent in outer wind regions, above
the critical point, the wind settles on the critical solution. (2)

If perturbations occur just below the critical point, runaway
proceeds to a stationary, so-called overloaded solution.
Such a Ñow is characterized by a broad deceleration
domain. The line force cannot balance gravity in the vicinity
of the critical point (the bottleneck of the Ñow) because of a
supercritical mass-loss rate. (3) Perturbations close to the
photosphere result in the wind being decelerated to negative
speeds. Gas falls back toward the photosphere and collides
with upward-streaming gas. A time-dependent, overloaded
wind results with a train of shocks and shells propagating
outward.

The runaway mechanism discussed here depends solely
on the asymmetry of the line force with respect to velocity
perturbations that cause local Ñow deceleration, dv/dr \ 0.
It should, therefore, be a robust feature and not depend on
Sobolev approximation.

We thank Mark Bottor†, Wolf-Rainer Hamann, Colin
Norman, Stan Owocki, and Joachim Puls for illuminating
discussions. We thank the referee, Joe Cassinelli, for sugges-
tions toward a more detailed discussion of critical points
and gas infall. This work was supported in part by NASA
grants NAG 5-10823, NAG 5-3841, WKU 522762-98-6, and
HST GO-08123.01-97A to I. S., which are gratefully
acknowledged.

REFERENCES
Abbott, D. C. 1980, ApJ, 242, 1183
ÈÈÈ. 1982, ApJ, 259, 282
Cannon, C. J., & Thomas, R. N. 1977, ApJ, 211, 910
Cassinelli, J. P., Cohen, D. H., MacFarlane, J. J., Sanders, W. T., & Welsh,

B. Y. 1994, ApJ, 421, 705
Cassinelli, J. P., Miller, N. A., Waldron, W. L., MacFarlane, J. J., & Cohen,

D. H. 2001, ApJ, 554, L55
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157 (CAK)
Chapman, C. J. 2000, High Speed Flow (Cambridge : Cambridge Univ.

Press)
Courant, R., & Friedrichs, K. O. 1948, Supersonic Flow and Shock Waves

(New York : Interscience)
Courant, R., & Hilbert, D. 1968, Methoden der Mathematischen Physik

(Berlin : Springer)
Feldmeier, A., Puls, J., & Pauldrach, A. 1997, A&A, 322, 878
Feldmeier, A., & Shlosman, I. 1999, ApJ, 526, 344
ÈÈÈ. 2000, ApJ, 532, L125
Feldmeier, A., Shlosman, I., & Hamann, W.-R. 2001, ApJ, submitted
Friend, D. B., & Abbott, D. C. 1986, ApJ, 311, 701
Holzer, T. E. 1987, in IAU Symp. 122, Circumstellar Matter, ed.

I. Appenzeller & C. Jordan (Dordrecht : Reidel), 289
Howk, J. C., Cassinelli, J. P., Bjorkman, J. E., & Lamers, H. J. G. L. M.

2000, ApJ, 534, 348
Koninx, J.-P. 1992, Ph. D. thesis, Utrecht Univ.
Lamb, H. 1932, Hydrodynamics (New York : Dover)

Lamers, H. J. G. L. M., & Cassinelli, J. P. 1999, Introduction to Stellar
Winds (Cambridge : Cambridge Univ. Press)

Leer, E., & Holzer, T. E. 1980, J. Geophys. Res., 85, 4681
Lucy, L. B. 1975, Mem. Soc. R. Sci. 8, 359Liège,
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