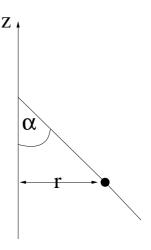
Universität Potsdam Institut für Physik und Astronomie Abgabe am 4. Juni 2020, 24 Uhr SS2020: Übung 07 V: Feldmeier Schwarz¹


Übungsaufgaben zur theoretischen Mechanik²

22 Punkte

1. Perle auf einem Draht

6 Punkte

An einer vertikalen Achse (z-Richtung), die sich mit der Winkelgeschwindigkeit ω dreht, ist unter dem Winkel α ein gerader Draht befestigt, auf dem eine Perle der Masse m reibungsfrei gleitet. In Richtung der negativen z-Achse wirke ein homogenes Gravitationsfeld mit der Gravitationsfeldstärke vom Betrag g.

- a) Bestimmen Sie die Zwangsbedingungen. Sind diese holonom? Stellen Sie die Lagrange-Gleichungen 1. Art in Zylinderkoordinaten z, r, φ auf.
- b) Lösen Sie die Bewegungsgleichungen für die Anfangsbedingungen $r(t=0)=\dot{r}(t=0)=0.$
- c) Berechnen Sie die Zwangskräfte.
- d) Berechnen Sie die Energie der Perle. Zeigen Sie, dass der Energiegewinn durch Zwangsarbeit verursacht wird.

2. Paar auf einer Parabel

5 Punkte

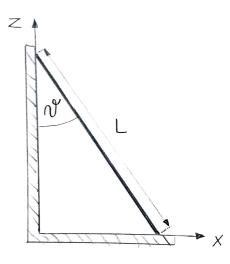
Zwei Teilchen der Massen m_1 und m_2 , die durch eine masselose Stange der Länge L verbunden sind, werden reibungsfrei auf einer Schiene der Gestalt $y = \frac{1}{2}ax^2$ geführt. Es wirkt nur die Schwerkraft in negativer y-Richtung.

- a) Wie viele Zwangsbedingungen gibt es in diesem System?
- b) Geben Sie die Ausdrücke für die Zwangsbedingungen explizit an!
- c) Wie lauten die Bewegungsgleichungen in Form der Lagrange-Gleichungen 1. Art?

¹udo.schwarz@uni-potsdam.de

 $^{^2 \}rm http://www.astro.physik.uni-potsdam.de/~afeld/2020SSMechanik.html http://www.astro.physik.uni-potsdam.de/~afeld/$

3. Erstes Newtonsches Gesetz auf gekrümmten Flächen


5 Punkte

Ein Massepunkt m bewegt sich kräftefrei (keine Gravitation) auf irgendeiner Fläche G(x,y,z)=0. Zeigen Sie mit den Lagrangeschen Gleichungen erster Art, dass m sich mit konstanter Geschwindigkeit v bewegt. (Das erste Newtonsche Gesetz gilt also auch auf gekrümmten Flächen.)

<u>4.</u> Reibungsfrei abrutschendes Brett

6 Punkte

Ein anfänglich fast senkrecht stehendes Brett mit Länge L und Masse m rutscht im homogenen Schwerefeld reibungsfrei an Wand und Boden.

- a) Bestimmen Sie die Zwangsbedingungen.
- b) Wie lautet die Lagrangefunktion? Verwenden Sie den Neigungswinkel ϑ des Brettes als Freiheitsgrad!
- c) Nutzen Sie den Energiesatz zur Angabe der Geschwindigkeit des Schwerpunkts des Brettes $v(\vartheta)$.
- d) Bei welchem Winkel ϑ ist die horizontale Geschwindigkei v_x maximal?
- e) Bei welchem Winkel ϑ ist die horizontale Beschleunigung a_x maximal?
- f) Begründen Sie: Das Brett verliert den Wandkontakt noch bevor es in ganzer Länge den Boden berührt.