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Abstract. Line driven winds are accelerated by the momentum transfer from photons
to a plasma, by absorption and scattering in numerous spectral lines. Line driving is
most efficient for ultraviolet radiation, and at plasma temperatures from 104 K to 105 K.
Astronomical objects which show line driven winds include stars of spectral type O, B,
and A, Wolf-Rayet stars, and accretion disks over a wide range of scales, from disks in
young stellar objects and cataclysmic variables to quasar disks. It is not yet possible to
solve the full wind problem numerically, and treat the combined hydrodynamics, radiative
transfer, and statistical equilibrium of these flows. The emphasis in the present writing
is on wind hydrodynamics, with severe simplifications in the other two areas. I consider
three topics in some detail, for reasons of personal involvement. 1. Wind instability, as
caused by Doppler de-shadowing of gas parcels. The instability causes the wind gas to be
compressed into dense shells enclosed by strong shocks. Fast clouds occur in the space
between shells, and collide with the latter. This leads to X-ray flashes which may explain
the observed X-ray emission from hot stars. 2. Wind runaway, as caused by a new type
of radiative waves. The runaway may explain why observed line driven winds adopt fast,
critical solutions instead of shallow (or breeze) solutions. Under certain conditions the
wind settles on overloaded solutions, which show a broad deceleration region and kinks
in their velocity law. 3. Magnetized winds, as launched from accretion disks around stars
or in active galactic nuclei. Line driving is assisted by centrifugal forces along co-rotating
poloidal magnetic field lines, and by Lorentz forces due to toroidal field gradients. A
vortex sheet starting at the inner disk rim can lead to highly enhanced mass loss rates.

Zusammenfassung. Liniengetriebene Winde werden durch Impulsübertrag von Photo-
nen auf ein Plasma bei Absorption oder Streuung in zahlreichen Spektrallinien beschleu-
nigt. Dieser Prozess ist besonders effizient für ultraviolette Strahlung und Plasmatempe-
raturen zwischen 104 K und 105 K. Zu den astronomischen Objekten mit liniengetriebe-
nen Winden gehören Sterne der Spektraltypen O, B und A, Wolf-Rayet-Sterne sowie
Akkretionsscheiben verschiedenster Größenordnung, von Scheiben um junge Sterne und in
kataklysmischen Veränderlichen bis zu Quasarscheiben. Es ist bislang nicht möglich, das
vollständige Windproblem numerisch zu lösen, also die Hydrodynamik, den Strahlungs-
transport und das statistische Gleichgewicht dieser Strömungen gleichzeitig zu behan-
deln. Die Betonung liegt in dieser Arbeit auf der Windhydrodynamik, mit starken Verein-
fachungen in den beiden anderen Gebieten. Wegen persönlicher Beteiligung betrachte ich
drei Themen im Detail. 1. Windinstabilität durch Dopplerde-shadowing des Gases. Die
Instabilität bewirkt, dass Windgas in dichte Schalen komprimiert wird, die von starken
Stoßfronten begrenzt sind. Schnelle Wolken entstehen im Raum zwischen den Schalen
und stoßen mit diesen zusammen. Dies erzeugt Röntgenflashes, die die beobachtete
Röntgenstrahlung heißer Sterne erklären können. 2. Wind runway durch radiative Wellen.
Der runaway zeigt, warum beobachtete liniengetriebene Winde schnelle, kritische Lösungen
anstelle von Brisenlösungen (oder shallow solutions) annehmen. Unter bestimmten Be-
dingungen stabilisiert der Wind sich auf masseüberladenen Lösungen, mit einem breiten,
abbremsenden Bereich und Knicken im Geschwindigkeitsfeld. 3. Magnetische Winde von
Akkretionsscheiben um Sterne oder in aktiven Galaxienzentren. Die Linienbeschleunigung
wird hier durch die Zentrifugalkraft entlang korotierender poloidaler Magnetfelder und die
Lorentzkraft aufgrund von Gradienten im toroidalen Feld unterstützt. Ein Wirbelblatt,
das am inneren Scheibenrand beginnt, kann zu stark erhöhten Massenverlustraten führen.
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§1 Introduction
1

Why line driven winds? The study of winds from astronomical objects started
with Parker’s work on the solar wind in 1958, one of the landmark theories in
astronomy. At present, four important types of hydrodynamic winds are known in
astronomy: the thermal wind from Sun; dust driven winds from red supergiants;
line driven winds from blue stars and accretion disks; and magnetocentrifugal winds
from accretion disks, either around stars or in quasars.
Thermal winds are accelerated by gas pressure in a hot corona. Parker’s break-
through idea was that the solar wind can be described as a transsonic hydrody-
namic flow, instead of a discrete particle flux. Dusty winds are driven by contin-
uum radiation pressure acting on dust grains in a relatively cool environment. Line
driven winds are also driven by radiation pressure, yet, in numerous ultraviolet spec-
tral lines. Finally, magnetocentrifugal winds are launched from accretion disks, via
centrifugal forces acting along poloidal field lines, or Lorentz forces caused by the
toroidal field.
By contrast to geological winds which are essentially horizontal flows caused by
pressure gradients and the Coriolis force, the above four astronomical winds directly
oppose gravity, and carry away mass and momentum from the central object. For
line driven winds, both the mass loss rate, Ṁ , and the momentum rate, Ṁv∞ (with
terminal wind speed v∞), are large. These winds are therefore important in two
respects:
Stellar evolution. Hot, massive stars lose a large fraction of their initial mass through
winds, and the winds control stellar evolution. Unfortunately, the phases of strongest
mass loss, the LBV (luminous blue variable) and Wolf-Rayet phase, are not well un-
derstood, and empirical formulae have to be used in evolutionary calculations. The
LBV phase may be characterized by the star reaching its Eddington limit (radiation
pressure on electrons larger than gravity; Langer et al. 1999).
Star formation. Hot stars often reside in environments rich of gas and dust. The
stellar wind enriches the interstellar medium with metals and triggers (bursts of)
star formation (Leitherer et al. 1999). Figure 1 shows an aspect of this process which
was recently discovered. Shown is a Hubble Space Telescope image, where radiation
from an O7 main sequence star may prevent planet formation. The stellar wind is
seen blowing off matter from the protoplanetary accretion disk.
We add more reasons why the hydrodynamics of line driven winds is an important
and interesting new research area.
Spectroscopy. Fundamental parameters of hot stars like radius and mass can be de-
rived from quantitative spectroscopy of spectral lines forming in their winds (Paul-
drach, Hoffmann, & Lennon 2001; Kudritzki & Puls 2000; Hamann & Koesterke
1998a; Hillier & Miller 1998). Most importantly, the star’s luminosity follows from
the wind-momentum luminosity relation (Kudritzki, Lennon, & Puls 1995). In the
near future, hot, massive stars may compete with Cepheids as primary distance
indicators. Wind hydrodynamics affects spectral line formation and therefore quan-
titative spectroscopy in a fundamental way. Observed spectral line features which

1 Only some key references are cited in the introduction.
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Figure 1: NASA press release, April 26, 2001. “Hubble Watches Planetary Nurseries Being
Torched by Radiation from Hot Star. Planet formation is a hazardous process. This snapshot, taken
by HST, shows a dust disk around an embryonic star in the Orion Nebula being ‘blowtorched’ by
a blistering flood of ultraviolet radiation from the region’s brightest star. Within these disks are
the seeds of planets. Evidence suggests that dust grains in the disk are already forming larger
particles, which range in size from snowflakes to gravel. But these particles may not have time to
grow into full-fledged planets because of the relentless ‘hurricane’ of radiation from the nebula’s
hottest star, Theta 1 Orionis C. In the picture, the disk is oval near the center. Radiation from the
hot star is heating up the disk, causing matter to dissipate. A strong ‘stellar wind’ is propelling
the material away from the disk.”

are indicators for time-dependent flow features are (we mention only the terms,
without going into explanations): black troughs, discrete absorption components,
enhanced electron scattering wings, bowed variation contours, variable blue edges,
and discrete emission components.
New force. Line driving is a new hydrodynamic force, and defines a new class of
‘radiating fluids’. In astrophysics, radiation hydrodynamics is of similar importance
as magnetohydrodynamics. The unique quality about line driving is ‘Doppler tun-
ing’. Each spectral line can absorb photons in a narrow frequency band only, its
width being determined by the thermal speed of ions. After a minute acceleration
of the gas by the line force, the Doppler-shifted spectral line can absorb at bluer
frequencies, from the ‘fresh’ stellar continuum. The ratio of terminal to thermal
speed, which is roughly the maximum Mach number, Ma, of the flow, is therefore
of order the width of the UV frequency band divided by the line width: Ma > 100!
By contrast, flows driven by continuum absorption of radiation, the solar wind, and
MHD flows (if the Mach number with respect to Alfvén waves is considered) have
Ma ≤ 10 in their accelerating regions.
New waves. Actually, Ma ≤ 10 also holds for line driven winds, with respect to a
new type of line driven or Abbott waves (Abbott 1980). These waves are discussed
controversially in the literature, and a strict proof of their existence is still missing.
They may play a central role in the ubiquitous ‘discrete absorption components’
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observed in unsaturated P Cygni line profiles (Cranmer & Owocki 1996); and they
may drive line driven winds towards a unique, critical solution.
Range of objects. The importance of line driving is also clear from a list of as-
tronomical objects which share this flow type. Line driven winds occur in O and
B stars (Lucy & Solomon 1970), Wolf-Rayet stars (Lucy & Abbott 1993; Gayley,
Owocki, & Cranmer 1995; Hamann & Koesterke 2000), central stars of planetary
nebula (Koesterke & Hamann 1997), and in A supergiants (Kudritzki et al. 1999).
The latter are the optically brightest stars, and are central in extragalactic distance
determination. A relatively new idea is that line driven winds are launched from
accretion disks. Relevant cases span a huge range, reaching from active galactic
nuclei (quasars and Seyfert galaxies; Weymann, Turnshek, & Christiansen 1985)
to cataclysmic variables (white dwarfs with a late-type, main-sequence companion;
Heap et al. 1978) and young stellar objects (bright B protostars; Drew, Proga, &
Stone 1998).
Interaction of line and magnetic driving. Line driven winds from magnetized ac-
cretion disks may show an intricate interplay of three driving forces: the radiative,
Lorentz, and centrifugal force. The assistance of line driving may help to overcome
problems encountered with pure magnetocentrifugal driving. This should be rele-
vant for accretion disks in quasars and young stellar objects, where magnetic fields
and radiation fields are strong.
After this general motivation, and before we go over to more detailed discussions in
the main text, we give an overview of the results and ideas treated in the following.

Wind instability and X-ray emission. Line driven winds are subject to a new
radiation-hydrodynamics instability (Lucy & Solomon 1970). If a fluid parcel ex-
periences a small, positive velocity perturbation, it gets Doppler-shifted out of the
absorption shadow of gas lying closer to the radiation source (the photosphere). It
sees more light and experiences stronger driving, hence, is further accelerated: an
amplification cycle results, termed de-shadowing instability. Since the flow is highly
supersonic, perturbations are expected to quickly grow into shocks.
In an important paper, Owocki, Castor, and Rybicki (1988; OCR from now) calcu-
lated for the first time the unstable flow structure numerically, along a 1-D, radial
ray assuming spherical symmetry. The initially smooth flow is transformed into a
sequence of dense shells. Since the shells are accelerated outwards, they are Rayleigh-
Taylor unstable and should fragment. In linear approximation, the de-shadowing
instability has no lateral component (Rybicki, Owocki, & Castor 1990), and one
may expect that the R-T debris maintains a relatively large, lateral scale. However,
this is presently mere speculation, since 2-D simulations are lacking due to compu-
tational limitations. The fragmented shells are separated radially by broad regions
of rarefied, steeply accelerating gas. The thin, fast gas is eventually decelerated in
strong reverse shocks on the inner, starward (or disk) facing rim of the shells. The
shells propagate outwards at a speed similar to that of smooth, stationary flow. Fig-
ure 2 shows the evolved wind structure. The origin of X-ray emission in cloud-shell
collisions is also indicated in this sketch.
The detection of X-rays from early-type stars was one of the major discoveries of
the Einstein satellite (Seward et al. 1979; Harnden et al. 1979). For O stars, the
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Figure 2: Expected structure of an unstable, line driven wind. Dense shells fragment
via Rayleigh-Taylor instability. Fast clouds collide with the shell fragments, creating
X-ray flashes.

ratio of X-ray and total luminosity is Lx/Lbol ∼ 10−7±1. X-ray temperatures are 106

to 107.5 Kelvin, two or three orders of magnitude above photospheric temperatures.
Early-type stars have no envelope convection zones and are thus quite different
from solar-type stars with convection zones, magnetic fields, and hot coronae. It is
generally believed that the X-ray emission from hot stars originates in their winds,
possibly in shocks which result from de-shadowing instability.
While this idea is consistent with many observational facts, especially the absence
of K-shell absorption edges, theoretical modeling encounters severe problems. In a
phenomenological model of strong forward shocks in the wind (Lucy 1982b), Lx was
found to be a factor of 100 smaller than derived from Einstein data (Cassinelli
& Swank 1983). The same problem occured for the hydrodynamic wind models of
OCR, which show an X-ray flux deficiency by factors of 10 to 100 (Hillier et al. 1993).
Instead of a continuous X-ray emission from quasi-steady wind shocks, we propose
X-rays flashes of short duration. These flashes occur when fast wind clouds collide
with a dense, cold shell. The clouds are created via turbulent ablation from a
‘mildly’ dense gas reservoir lying ahead of the overdense, highly compressed shells.
At the wind base, roughly one half of the upstreaming gas is quickly compressed into
shells. The remaining gas is available for cloud formation at larger heights in the
wind. The clouds are accelerated through empty intershell space, until they collide
with the next outer shell. Time averaged X-ray spectra synthesised from these
models match Rosat observations well. Variations between individual snapshots
are large, however, in contrast to the observed constancy of X-ray fluxes.
Since the clouds are of turbulent origin, we speculate that their lateral scale is much
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smaller than that of shell fragments. In future 2-D modeling, X-ray flux constancy
may be achieved via angle averaging over independent, radial wind rays, each with
its own cloud-shell collisions taking place.

Wind runaway caused by Abbott waves. After the discussion in Chapter 2 of
localized flow features due to de-shadowing instability, we turn in Chapter 3 to the
global solution topology of steady, line driven winds. The question we pose is: why
do line driven winds from stars and accretion disks adopt a unique, critical solution?
In a first attempt to answer this question, we suppress de-shadowing instability by
adopting the simplifying Sobolev approximation in the line force. Future work has to
unify both aspects, global and local. (A relevant question could then be: can local,
unstable flow structure provide the seed perturbations required for global solution
transformation?)
In their fundamental work on line driven winds, Castor, Abbott, and Klein (1975;
CAK from now) showed that the stationary Euler equation has an infinite number of
possible solutions. They come in two classes, ‘shallow’ and ‘steep’. Steep solutions
are supersonic, and cannot connect to the subsonic wind base. Shallow solutions fail
to reach large radii, as they cannot perform the required spherical expansion work.
CAK concluded that the wind adopts the unique, critical solution which starts
shallow and ends steep, switching smoothly between the classes at some critical
point. This defines the critical or CAK solution.
Evidence mounts that the argument given by CAK is too restrictive. The question
arises whether the CAK solution is still unique if discontinuities are allowed for
in derivatives of flow quantities (i.e., kinks). Is the CAK solution a dynamical
attractor in the sense of mechanical system theory? And how does the transition
between shallow and the critical solution occur?
Radiative or Abbott waves are the key to answer these questions. We show that
shallow solutions are sub-abbottic, and Abbott waves propagate inwards towards the
photosphere from any point in the wind. Numerical wind simulations published so
far assume pure outflow boundary conditions, which apply if all characteristics leave
the mesh. The standard argument is that the outer boundary is highly supersonic,
at Ma > 100. Instead, we see now that Ma < 1 for Abbott waves along shallow
solutions. We show that, by chosing outflow boundary conditions, the numerical
scheme is forced to relax to a super-abbottic solution. If the wind is sub-abbottic
(yet, supersonic), outflow boundary conditions cause numerical runaway.
Abbott waves define the characteristics of line driven winds, and as such have to be
included in the Courant time step, to prevent numerical runaway. This has not be
done so far. Accounting for Abbott waves in the Courant time step and applying
non-reflecting Riemann conditions at the outer boundary, we find that the numerical
scheme converges to shallow solutions from a wide class of initial conditions.
Will line driven winds in nature adopt a shallow solution? We suggest that this is not
the case, and identify a new, physical runaway which drives shallow solutions towards
the critical one. This runaway depends on new and strange dispersion properties
of Abbott waves: negative velocity gradients propagate downstream and outwards,
as opposed to upstream propagating, positive velocity gradients. This asymmetry
causes systematic evolution of the wind towards larger speeds. The runaway stops
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when a critical point forms in the flow, and prevents waves to penetrate downwards
to the wind base. This is the case for the CAK solution.
A new solution type occurs with generalized critical points. If the wind is perturbed
in the sub-abbottic region below the CAK critical point, runaway does not stop
on the CAK solution. Instead, the wind becomes overloaded. A new critical point
forms, showing up as a kink in the velocity law at which the wind starts to decelerate.
This is a direct consequence of overloading, since super-CAK mass loss rates cannot
be accelerated through the CAK critical point. Increasing the overloading further,
negative flow speeds result, and a steady solution is no longer possible. Shocks
and shells form in the wind, and propagate outwards. There is some observational
evidence suggesting that the wind of the LBV star P Cygni has indeed a broad,
decelerating region.

Winds from accretion disks. The last, forth chapter also deals with a simple
Sobolev line force, however, in a more complicated flow geometry. Observations
indicate that line driven winds are launched by the ultraviolet radiation field in
certain types of accretion disks. For example, P Cygni line profiles from broad
absorption line quasars show terminal speeds of 10% the speed of light (Turnshek
1984). The flow is rather massive, with mass fluxes of order one solar mass per
year in luminous quasars. Both facts are suggestive of a line driven wind. However,
the ionizing radiation from the central source poses a serious problem. Wind gas
which is not highly compressed or shielded from this radiation becomes fully ionized,
and line driving stalls. Shielding could be provided by a cold disk atmosphere.
The wind is launched vertically from the disk, reaches large speeds already within
the atmosphere, and escapes on ballistic orbits after being exposed to the central
radiation (Shlosman et al. 1985). Alternatively, dense regions of hot, ionized gas
(of unspecified origin) may occur between the central source and the wind (Murray
et al. 1995). This gas may block ionizing X-rays, but could be transparent to UV
radiation. The flow is again launched vertically by local disk radiation, but quickly
bends over and makes a shallow angle with the disk when irradiated by the central
source. Numerical simulations show that the shielding region may consist of highly-
ionized, failed wind (Proga, Stone, & Kallman 2000). Strong observational support
that winds from broad absorption line quasars are driven by resonance line scattering
comes from “the ghost of Lyα” (Arav 1996).
While very fascinating, line driven quasar winds are still a matter of debate. On the
other hand, observational evidence for line driven disk winds in cataclysmic variables
(CVs) is unambiguous (Heap et al. 1978; Krautter et al. 1981). These systems
consist of a white dwarf and a late-type, main sequence companion. The latter fills
its Roche lobe and feeds an accretion disk onto the white dwarf. Observed P Cygni
line profiles clearly indicate a biconical outflow from the disk, not a spherical outflow
from the white dwarf itself (Vitello & Shlosman 1993). In Chapter 4, we discuss
numerical simulations and a semi-analytical model for CV winds. We encounter a
two-dimensional eigenvalue problem, for mass loss rates and wind tilt angles with
the disk. The derived mass loss rates are much smaller than was hitherto expected.
We discuss why the latter expectations were overestimates. Still, a large discrepancy
remains, and it is not yet clear why CV disk winds are so efficient in nature. Possibly,
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magnetic fields assist line driving. This leads over to the last topic of this writing,
magnetized winds.
Magnetocentrifugal winds could occur in young stellar objects and in quasars. In
the classical model of Blandford & Payne (1982; see Fig. 3 for a realistic scenario),
outflow occurs along poloidal magnetic field lines. If the magnetic pressure in the
disk corona is much larger than gas pressure, the field lines co-rotate with the disk.
The field lines act as lever arms and, at inclination angles < 60 degrees with the disk,
flung the gas outwards. Above the Alfvén point, ram pressure dominates magnetic
pressure in the wind. The gas parcels start to conserve angular momentum, and
lack behind the disk rotation. The poloidal field gets wound-up into a toroidal field.
Hoop stresses of the latter confine the centrifugal outflow to bipolar jets, and jets
are indeed often found associated with young stellar objects (Eisloeffel et al. 2000).
There is a large body of literature on the theory of magnetocentrifugal disk winds.
Some key references include: Pudritz & Norman (1983; 1986), Königl (1989), and
Heyvaerts & Norman (1989). An excellent review is Königl & Pudritz (2000).

Figure 3: Realistic scenario for a magnetocentrifugal wind from a quasar disk. Gas
clouds are centrifugally driven outwards along sufficiently inclined, co-rotating mag-
netic field lines. From Emmering, Blandford, & Shlosman (1992).

Recently, Drew, Proga, & Stone (1998) suggested that line driving could assist
magnetocentrifugal driving in bright young stellar objects (young B stars). The
cold accretion disk is assumed to be illuminated by the hot central star, and either
scatters the incident UV radiation or is itself heated to temperatures resulting in
strong UV emission. The disk radiation field launches a flow. The terminal speed
of line driven winds scales with the escape speed at their base, and is much smaller
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from outer disk regions than from the central star. This scenario could therefore
explain the small observed outflow speeds from certain objects.
At the end of Chapter 4, we present explorative 2-D simulations of magnetized
line driven winds. The resulting flow dynamics above accretion disks with small
Eddington factor is rather intricate. For realistic magnetic field strengths, mass loss
rates may be dramatically increased. We find that dominant magnetic driving is not
via the centrifugal force along poloidal field lines, but via the Lorentz force caused
by toroidal field gradients. This scenario, complementary to the Blandford & Payne
model, was proposed by Contopoulos (1995). Still, we find that the poloidal field
is mandatory for increased mass loss. A vortex sheet forms in the poloidal wind
velocity and magnetic field, and carries the toroidal field to such heights that it can
assist in driving the enhanced mass loss through the critical point (the ‘bottleneck’
of the flow).
Much work remains to be done on magnetized line driven winds, in order to under-
stand the relevant physics and rule out numerical artefacts. This is the reason why
no paper or preprint on this subject is appended to the present writing.
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CHAPTER 1. THE LINE FORCE

§2 Pure absorption line force. Sobolev approximation

For one line. Line driven winds stand and fall with the formulation of the radiative
force. The force due to momentum transfer by absorption and re-emission of photons
in spectral lines is termed ‘line force’ from now. The basic problem in calculating the
line force is the inclusion of scattering in the wind. The absorbed radiation deter-
mines together with particle collisions the ionization degree and occupation numbers
of the plasma, which in turn determine the emitted radiation field. For a stationary
and smooth flow, the feedback between radiative transfer and statistical equilib-
rium of the gas can be solved using ALI techniques (Cannon 1973; Scharmer 1981;
Hamann 1985). However, coupling the radiative transfer and thermal equilibrium to
time-dependent hydrodynamics over ≈ 105 time steps (instead of ‘1’ for stationary
winds) and for ≈ 5000 spatial grid points in a highly non-monotonic velocity law
(instead of 50 for smooth flow) is not yet possible. Hydrodynamic simulations have
to severely approximate the radiative transfer and thermal equilibrium of the wind.
The line force from all driving lines (between 10 and 105) is calculated from the
force on a single line via a power law line distribution function with two parameters
(Castor, Abbott, & Klein 1975; CAK in the following). For dense O supergiant
winds, these parameters are constrained within relatively narrow margins (Gayley
1995; Puls, Springmann, & Lennon 2000). The radiative transfer in the remain-
ing, ‘generic’ spectral line is further simplified. In Chapter 2, we consider pure line
absorption and a simplified approach to scattering. In Chapters 3 and 4, Sobolev
approximation is used.
The force which acts on a gas absorbing radiation of intensity I is derived in the
textbooks by Chandrasekhar (1950) and Mihalas (1978). To avoid angle integrals at
the present step, we consider a radial, spherically symmetric flow with coordinate r,
which is accelerated by absorption (no scattering) of radiation from a point source
located at r = 0. The line force per mass, gl, is

gl(r) = gt(r)

∫ ∞
−∞

dx φ(x− v(r)/vth)e−τ(x,r), (1)

where τ is the line optical depth,

τ(x, r) =

∫ r

0

dr′κ(r′)φ(x− v(r′)/vth)) (2)

and
gt(r) = κ∆νDFν0(r)/c (3)

is the radiative acceleration if the line were optically thin, τ � 1. A Doppler profile
function is assumed, φ(x) = π−1/2 exp(−x2), with normalized frequency variable
x = (ν − ν0)/∆νD. Here, ν0 is the line frequency and ∆νD = ν0vth/c the Doppler
width of the line, with c the speed of light. For simplicity, the thermal speed vth

is assumed to be constant. The radial wind velocity is given by v, and v/vth in
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the profile function accounts for Doppler shifts. In an accelerating wind, ions can
absorb ‘blue’ photons, ν > ν0, in the line transition ν0, since they appear redshifted.
Finally, Fν is the radiative flux per frequency interval dν at frequency ν, and κ is the
mass absorption coefficient of the line, in units cm2 per gram. For line transitions
to the ground state (resonance lines) and to metastable levels, which both dominate
the line force, κ is to a good approximation constant, as shall be assumed in all the
following.
In hydrodynamic wind simulations of the de-shadowing instability, eqs. (1) and (2)
have to be calculated as they stand, by explicit quadrature over dr and dx (and
over angle; Owocki, Castor, & Rybicki 1988; Owocki 1991; paper [1]). The r and x
integrals are time consuming, since high spatial and frequency resolution is required:
the thermal band has to be resolved in both r and x. The thermal speed of metal
ions is a few km/s in hot star winds, whereas the terminal wind speed is thousand
km/s and larger. Hence, thousands of frequency and spatial grid points are required.
The angle integral, on the other hand, is cheap for stellar wind simulations with a
high degree of symmetry. A one- or two-ray quadrature may be sufficient. This
is no longer true for winds above accretion disks, due to the radial temperature
stratification of the disk and the complicated flow geometry (Proga, Stone, & Drew
1998; [6]).

Sobolev approximation. In Sobolev approximation, the profile function φ is
replaced by a Dirac δ function: the wind is assumed to accelerate so steeply that a
spectral line is Doppler-shifted into resonance with a photon over a narrow spatial
range only. This region is called a resonance or Sobolev zone. The quantities ρ,
κ and dv/dr are assumed to be constant over the Sobolev zone. By definition, v
increases by a few thermal speeds over the zone.
Radiative transfer takes place then on a ‘microscopic’ scale within the zone, hydro-
dynamics (i.e., changes in ρ and dv/dr) on a ‘macroscopic’ scale (Rybicki & Hummer
1978). The fact that the wind speed v is neither a truly microscopic nor macroscopic
variable causes some difficulties in our understanding of radiative waves and critical
points in line driven flows [10]. A characteristic analysis in Chapter 3 shows that in
Sobolev approximation, dv/dr and not v is a fundamental hydrodynamic quantity
besides ρ.
To calculate the line force in Sobolev approximation from a point source of radiation,
substitute r → x̃ in the optical depth (2), where x̃ = x − v(r)/vth. This is allowed
for monotonic v(r), and gives

τ(x̃) = τ0 Φ(x̃), (4)

where Φ(x̃) =
∫∞
x̃
dy φ(y), and τ0 = ρκvth/(dv/dr) is the total optical depth of the

Sobolev resonance zone. The line force at r is caused by lines which absorb at r,
hence x̃(r) = 0 and τ0 = τ0(r). Furthermore, x̃ ≡ ∞ is assumed at the wind base.
Substituting x→ Φ in the line force integral (1) gives

gl(r) = gt(r)b(r), with b(r) =
1− e−τ0

τ0

(5)
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the so-called ‘photon escape probability.’ For τ � 1 and τ � 1, the line force scales
as κ and ρ−1dv/dr, respectively.
The expression (5) holds also for the Sobolev force when line scattering is included,
and the diffuse radiation field is fore-aft symmetric, i.e., the latter does then not
contribute to the line force. We will apply a Sobolev force in Chapters 3 and 4.
In Chapter 2, we consider the more complicated SSF and EISF forces, which are
extensions of the general force (1) to the case of line scattering, using ingredients
from Sobolev approximation to calculate the radiative source function.

Force from all lines. To calculate the line force from thousands of spectral lines,
the CAK line distribution function is used throughout. By assumption, there is no
wind-velocity induced line overlap, and each photon is scattered in one line at most.
The CAK line distribution function is given by

N(ν, κ) =
1

ν

1

κ0

(κ0

κ

)2−α
, (6)

introducing two parameters, κ0 and α, where 0 < α < 1. Integrating (1) over ν and
κ using (6), the total line force becomes (we keep the symbol gl from the single line
force),

gl(r) =
Γ(α)κ1−α

0 vth

c2
F (r)

∫ ∞
−∞

dx
φ(x− v(r)/vth)

ηα(x, r)
, (7)

where Γ is the Gamma function, F is the frequency integrated flux, and we intro-
duced η ≡ τ/κ (constant κ for each line), with τ calculated from (2). Inserting
instead for a moment the Sobolev optical depth (4), one finds for the total line force
in Sobolev approximation,

gl(r) =
Γ(α)κ0vth

(1− α)c2
F (r) τ0(r)−α, (8)

where we redefined τ0 = κ0ρvth/(dv/dr) (in order to avoid adding another subscript
0 to τ0). Precise values for κ0 (or, equivalently, the CAK parameter k) and α
must be obtained from a detailed NLTE treatment of the wind. For the present
purposes, some universal estimates are sufficient. Puls et al. (2000) derive α = 2/3
from Kramers’ opacity law for hydrogen-like ions; this value should apply for dense
winds. In thin winds, α ≤ 1/2 (Pauldrach et al. 1994). The absorption coefficient
κ0 corresponds roughly to the strongest line in the flow, κ0 = O(108 cm2 g−1) in
dense winds. Alternatively, κ0 can be expressed in terms of an effective oscillator
number Q (Gayley 1995),

κ0vth

σec
= QΓ(α)−

1
1−α , (9)

where σe is the absorption coefficient for Thomson scattering on electrons. In a
fully ionized hydrogen plasma, σe = 0.4 cm2/g. For O supergiant winds, Q ≈ 2000
(Gayley 1995), from which κ0 can be calculated.
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§3 Scattering in SSF and EISF approximation

First time-dependent hydrodynamic simulations of unstable O star winds by Owocki
et al. (1988) assumed a pure absorption line force like that in (1,2) since the de-
shadowing instability vanishes in Sobolev approximation. This led to certain unex-
pected results, most notably, that the time-averaged wind does not adopt the CAK
solution, but a steeper solution. (The stationary CAK solution is treated in Chap-
ter 3. Until then, it suffices to know that this solution is unique, has a maximum
mass loss rate, and a critical point which is not the sonic point.) The defects of the
pure absorption model are still not fully understood (see Owocki & Puls 1999 for
new insights), but they vanish when line scattering is included. (The diffuse force
scales ∼ vth/v, and vanishes only in Sobolev approximation.) Hence, we turn to a
simplified treatment of scattering now.
In the ‘smooth source function’ or SSF method (Owocki 1991), a purely local radia-
tive source function from Sobolev aproximation is assumed. The principal idea goes
back to Hamann (1981a), and was adopted in the SEI method of Lamers, Cerruti-
Sola, & Perinotto (1987). The remaining ‘formal solution’ of radiative transfer is
no more complex than for pure line absorption. Especially, the optical depth for
photons which are backscattered to the photosphere is by symmetry related to the
optical depth for photospheric photons. No extra integrals are required in the SSF
method, and the computational costs are practically the same as for pure absorp-
tion. The SSF method accounts for the important line drag effect (Lucy 1984),
which stabilizes the flow via the mean diffuse radiation field.
The next step of sophistication beyond pure absorption and SSF is the ‘escape-
integral source function’ or EISF method (Owocki & Puls 1996), which accounts for
the perturbed diffuse radiation field. Already linear stability theory becomes very
complex when perturbations in the diffuse radiation field are included (Owocki &
Rybicki 1985). Yet, the basic idea of the EISF method is clear and straightforward:
in spherical symmetry, the direct radiative force due to photon absorption in a single
line is, including now angle integrals explicitly,

ga(r) ∼ 〈µI∗(µ)b(µ, r)〉. (10)

Angle brackets indicate angle averages, µ is the cosine of the angle of a photon ray
with the radial direction, I∗(µ) is the angle dependent, photospheric radiation field,
and b(µ, r) is the escape probability for direction cosine µ (cf. eq. 1),

b(µ, r) =

∫
dx φ(x− µv(r)/vth) e−τ(x,µ,r). (11)

The diffuse or scattering force, on the other hand, is

gs(r) ∼ S(r)〈µb(µ, r)〉, (12)

with isotropic source function S. For pure scattering lines in Sobolev approximation,
one derives from (5) and the transfer equation (see Owocki & Rybicki 1985 for
details) that

S(r) =
〈I∗(µ)b(µ, r)〉
〈b(µ, r)〉

. (13)
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In the SSF method, different expressions are used for the escape probabilities in
ga, gs and in S: in the g’s, b is calculated from the actual, time-dependent flow
structure; whereas in S, purely local escape probabilities for a smooth flow are used.
By contrast, in the EISF method b from the actual, structured flow is used both in
g and S. No quantities are introduced in EISF which did not already occur in SSF.
Still, the calculational cost is much larger in EISF since two spatial integrals are
required. In the first integral, the source function is calculated over the whole mesh,
the second serves for a formal solution. Furthermore, a quadrature over frequency
x is required. Owocki & Puls (1996) remark that these 3 integrals can be reduced
to 2 again for a single spectral line; but not for a line ensemble.
The EISF approach allows for the first time to study phase reversal between velocity
and density fluctuations as a consequence of perturbations of the diffuse radiation
field. This subtle yet important effect is discussed further on page 30. The simula-
tions discussed in detail in the next chapter were calculated using the SSF method.
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CHAPTER 2. UNSTABLE WINDS

It is now believed that line driven winds from single stars show structure in all three
spatial directions. In the polar (rθ) plane, wind-compressed disks may (Bjorkman &
Cassinelli 1993; Owocki, Cranmer, & Blondin 1994) or may not (Owocki, Cranmer,
& Gayley 1996) form around rapidly rotating stars. In the equatorial (rφ) plane, co-
rotating interaction regions may cause ‘discrete absorption components’ (Cranmer
& Owocki 1996) observed in non-saturated P Cygni line profiles. Most ‘simply’,
however, already in 1-D radial flow shocks and dense shells develop due to a new
hydrodynamic instability. This instability is the subject of the present chapter.
To give an overview of the field, we start with a bibliography of relevant papers.
The instability mechanism is discussed, and results from linear stability analysis
are summarized. Because of the complexities of line scattering, linear theory is not
complete to the present day. This is not just a mathematical curiosity, but the
origin of a fundamental debate. Namely, since the Green’s function for the case
of pure line scattering is not yet known, the nature of signal propagation in these
unstable winds is – mysterious. Signal propagation plays a key role in understanding
how the flow adapts to boundary conditions. The main topic of this chapter is the
evolved, nonlinear wind structure found from numerical simulations, and its relation
to observed X-ray emission from O stars.

§4 The de-shadowing instability

History. A new, radiation hydrodynamics instability of line driven flows was first
suggested by Lucy & Solomon (1970). The mechanism is similar to one proposed by
Milne (1926) for the solar chromosphere. Approximate linear stability analysis was
performed by MacGregor, Hartmann, & Raymond (1979), Carlberg (1980), and Ab-
bott (1980). In the former two papers, unstable growth rates were derived, whereas
Abbott found a new, marginally stable, radiative-acoustic wave mode. This contra-
diction was resolved by Owocki & Rybicki (1984), who showed that the opposing
results apply on different length scales. Lucy (1984) found that the diffuse radiation
field from line scattering causes a drag effect which could prevent the instability.
Owocki & Rybicki (1985) derived that complete cancellation occurs only close to
the photosphere. A very puzzling result was derived by Owocki & Rybicki (1986),
who showed that Abbott waves do occur in absorption flows (they shouldn’t), but
as a pure mathematical artefact. What are the consequences for Abbott waves if
scattering is included? Rybicki, Owocki, & Castor (1990) proved that wind insta-
bility occurs in flow or radiative flux direction only. In lateral direction, line drag
stabilizes the flow. A linear stability analysis for Wolf-Rayet stars was performed
by Owocki & Rybicki (1991) and Gayley & Owocki (1995) in diffusion approxima-
tion. They found that unstable growth rates are reduced by the multi-scattering
factor. Feldmeier (1998, paper [5]) derived that the instability occurs already in
Sobolev approximation, if velocity curvature terms are included. This issue of fore-
aft asymmetries when crossing the Sobolev zone is addressed in papers by Lucy
(1975; Sobolev vs. Newtonian derivative); Owocki & Zank (1991; radiative viscos-
ity) Gayley & Owocki (1994; radiative heating), and Owocki & Puls (1999; source
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function depression). First numerical simulations of the evolved wind structure were
given in breakthrough papers by Owocki, Castor and Rybicki (1988; OCR) for the
case of pure line absorption, and by Owocki (1991, 1992) for line scattering in SSF
approximation. Poe, Owocki, & Castor (1990) suggested that the nodal topology of
the sonic point in line driven flows causes either solution degeneracy or convergence
to a steep, non-CAK solution. The classical paper on steady wind solutions and
the critical point topology is Castor, Abbott, & Klein (1975; CAK). The issue of
solution topology is again related to the inclusion of line scattering. The perturbed
diffuse radiation field was treated in linear analysis by Owocki & Rybicki (1985),
and implemented in numerical simulations by Owocki & Puls (1996) via the EISF
method. EISF simulations which clarified deeper aspects of the Sobolev approxima-
tion were performed by Owocki & Puls (1999). Phenomenological wind shock models
of X-ray emission were suggested by Lucy & White (1980), Lucy (1982b), Krolik
& Raymond (1985), and MacFarlane & Cassinelli (1989). The energy equation and
radiative cooling in post-shock zones was included in hydrodynamic simulations of
unstable winds by Feldmeier (1995, [1]), and Feldmeier, Puls, & Pauldrach (1997,
[4]) suggested X-ray emission from turbulent cloud collisions. P Cygni lines from
structured, unstable winds were calculated by Puls, Owocki, & Fullerton (1993) and
Puls et al. (1994).

1 The microscopic mechanism.2 The basic mechanism of the instability is as
follows. Consider the velocity law v(r) of a line driven wind. Because of its width
of a few vth as caused by thermal motions, v(r) may be called a thermal band.
The thickness of the thermal band is characterized by the Sobolev length, L =
vth/dv/dr. This is the natural length scale for line driven winds. Instability occurs
for perturbations with wavelength λ < L (we shall, however, find below that λ > L
is also unstable). An arbitrary, positive velocity fluctuation +δv Doppler-shifts a gas
parcel out of the absorption shadow of gas lying closer to the star (or the accretion
disk). The enhanced radiative flux on the parcel accelerates it to larger speeds and
de-shadows it further. Since the single-line force scales as gl ∼ e−τ , the amplification
cycle can be written as δv → −δτ → δgl → δv.
Once the parcel got ‘kicked out’ of the thermal band, further de-shadowing is im-
possible. Carlberg (1980) concluded that the instability should not cause observable
perturbations of the velocity law, but microscopic fluctuations of order vth only. This
is correct for short scale perturbations λ < L. We shall see below that long scale
perturbations, λ� L, result in ∆v � vth. It is therefore slightly misleading to say
(as is occasionally done) that the instability generally causes short scale structure.
Milne (1926) described a runaway process which he held responsible for the ejection
of high-speed atoms from the static solar chromosphere. The process is so similar
to the de-shadowing instability that we give a quotation from Milne’s paper.

“An atom which, due to some cause or other, begins to move outward from the sun
with an appreciable velocity will begin to absorb in the violet wing of the absorption
line corresponding to the same atom at rest, owing to the Doppler effect. It will

2 The numbers at the start of paragraphs correspond to the numbers in the figure on pages 14
and 15.
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therefore be exposed to more intense radiation, and the atom will be accelerated
outwards. It will therefore move still further out into the wing, where it will be
exposed to still more intense radiation, and so on, until it eventually climbs out of
its absorption line.”

Note that Milne describes a plasma instability for single ions, whereas the de-
shadowing instability is a hydrodynamic instability for fluid parcels. The other
difference is between a static atmosphere and a wind.

2 Linear instability for absorption lines. Owocki & Rybicki (1984) gave the
first, full derivation of instability growth rates. For long scale perturbations λ� L,
the imaginary growth rates turn into a real dispersion relation for Abbott waves
(or, in the older literature, ‘radiative-acoustic waves’). The derivation given in
equations (1) to (30) of Owocki & Rybicki (1984) is very compact. Hence we refer
to this paper, and quote only some results. Starting point of the derivation is the line
force from a point radiation source, eqs. (1, 2). Perturbations δv enter in both profile
functions φ(x). After substitution from spatial to frequency variables; applying
Sobolev approximation for the mean flow; and introducing harmonic perturbations
δv(r) ∼ exp(ikr) obeying WKB approximation, one arrives at the perturbed line
force (a subscript 0 refers to the mean flow),

δgl
δv

= iKω0τ0

∫ ∞
−∞

dx φ(x)e−τ0Φ(x)

∫ ∞
x

dx′φ(x′)e−iK(x′−x). (14)

Here, ω0 = gt/vth, τ0 = κ0ρ0vth/(dv0/dr), K = kL (the wavenumber in units of the
Sobolev length, L), and Φ(x) as above. The perturbed line force depends on the
profile function φ. Using an ingenious integration trick, Owocki & Rybicki (1984)
solved the double integral analytically for τ0 � 1, where it becomes independent of
φ. The result is

δgl
δv

= ωb
ik

χb + ik
(τ0 � 1), (15)

where (introducing an opacity χ = ρκ),

ωb = ω0 φ(xb), χb = χ0 φ(xb), (16)

and the blue edge frequency xb is defined by

Φ(xb) ≡ 1/τ0. (17)

For short scale perturbations, k →∞ and δgl/δv = ωb. This implies instability, since
the phase shift between velocity and force perturbations is 0. In the limit k → 0,
on the other hand, δgl/δv = ikω0/χ0. With 90 degrees phase lag between velocity
and force perturbations, this corresponds to marginally stable waves: Abbott waves.
For long scale perturbations with finite λ, one has (slightly) unstable waves. Again
from (15), the growth rate drops as (L/λ)2 for λ� L.
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3 Macroscopic linear instability: 2nd order Sobolev. Instead of going through
the above, ‘exact absorption’ analysis, Abbott (1980) applied Sobolev approximation
to the mean flow and to velocity perturbations. He finds marginally stable waves
which are not affected by the instability. This is odd since we saw above that
long scale waves, λ � L, are unstable, if only at reduced growth rates. But for
λ � L, Sobolev approximation should apply. Indeed, instability occurs in second
order Sobolev approximation, including curvature terms d2v/dr2 [5]. The second
order Sobolev optical depth τ is found to be,

τ(x̃, r) = τ0(r)

[
Φ(x̃) +

vth

2v′

(
v′′

v′
(r)− ρ′

ρ
(r)

)(
φ(x̃)− 2x̃Φ(x̃)

)]
, (18)

with τ0 as before, and primes indicating spatial derivatives. Using (18) to calculate
δτ in the perturbed line force one finds unstable Abbott waves, with growth rate
∼ (L/λ)2. Despite the different approximations made in the two approaches, the
latter growth rates agree to within 20% with those of Owocki & Rybicki (1984).
Equation (18) offers an intuitive understanding of the wind instability at large per-
turbation wavelengths, which complements the picture of parcels being kicked out
of the thermal band described earlier (see Fig. 1 in [5]). When the velocity law
experiences a small upward bend, v′′ < 0, the optical depth is reduced (we assume
that v′ averaged over the resonance zone is left unchanged). This implies an in-
crease in line force, gl ∼ e−τ . The ‘elevated’ region is accelerated to larger speeds.
This means it gets further elevated, and −v′′ grows further. An amplification cycle
−δv′′ → −δτ → δgl → δv → −δv′′ results. The corresponding argument holds for a
depression +δv′′.

4 Nonlinear steepening: a first look at evolved wind structure. We can
already at this stage predict some features of the evolved wind structure, before
going into details of hydrodynamic simulations. A depression in v(r) as considered
in the last paragraph will eventually cause the mean velocity gradient v′0 to become
smaller (assumed above to be left unchanged). Since τ0 ∼ 1/v′0 increases, the blue
wing frequency xb becomes more negative, and the growth rate ωb ∼ φ(xb) drops
steeply. The depression region will not evolve (‘depress’) further. Depression regions
will always remain close to the stationary flow. On the other hand, elevations of
the thermal band will continue to grow until the flow becomes optically thin and no
further de-shadowing is possible. In the nonlinear regime, fast gas overtakes slow gas
ahead of it, and the velocity law evolves a triangular sawtooth shape. The jumps in
the ‘shark fins’ decelerate the gas, hence, are reverse shocks. The robust morphology
of the wind velocity law, which shows up in most numerical simulations, is therefore:
a sawtooth pattern of steep, accelerating regions and pronounced reverse shocks.

5 How large are the shock jumps? Whereas short scale perturbations λ ≤ L
saturate at the microscopic level of a few vth (Carlberg 1980), large scale perturations
λ � L give velocity jumps of order v∞, the wind terminal speed. Overall, a short
scale, noisy structure (vth) is superimposed on a large scale, coherent tilt of the wind
velocity law [5].
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6 Scattering: the line drag effect. We consider an effect which proves the
fundamental importance of line scattering, and that the pure absorption line case
may be a degenerate limit (Owocki & Rybicki 1986). Lucy (1984) found that line
scattering, via a so-called line drag effect, may prevent wind instability! The origin
of the effect is simple. A wind parcel may again experience a perturbation +δv.
The parcel leaves the absorption shadow of gas lying closer to the star, leading to
instability. However, the parcel experiences also a stronger, backscattered radiation
field from larger heights, because it is Doppler-shifted into resonance with faster gas
further out. Hence, the inward push grows. Assuming a plane-parallel atmospheric
slab and that the star fills a hemisphere, and furthermore that scattering is fore-aft
symmetric, one shows that the direct and diffuse force perturbations in an optically
thick line cancel exactly. We leave consideration of the outward pointing diffuse
force from gas lying at smaller height than the perturbation site to the reader.
For spherically symmetric flow, the instability growth rate is back to 50% of its
pure absorption line value at one stellar radius above the photosphere, and reaches
80% of the absorption value at large radii (Owocki & Rybicki 1985). Still, the line
drag effect is of great importance both numerically, preventing fast growth at the
inner boundary, and in nature, with regard to the much-speculated ‘photospheric
connection’, i.e., whether wind structure grows from photospheric perturbations or
is wind intrinsic (Henrichs 1986; Henrichs et al. 1990).

§5 Evolved wind structure

After decades of fascinating and frustrating mathematical research on nonlinear
growth of fluid instabilities (Landau equation, bifurcation, chaos & catastrophes),
computers have shown a pragmatic way into evolved, unstable flow via direct, time-
dependent simulations. In this and the next sections, we discuss the structure of
fully developed, unstable line driven winds. To model the evolution of the instability,
a standard Eulerian grid code is used. For the pure hydrodynamics part, we coded
a program following the detailed, technical descriptions given in Hawley, Smarr, &
Wilson (1984), Norman & Winkler (1986), Reile & Gehren (1991), Stone & Norman
(1992a,b). Some of the techniques are also summarized in [1]. The applied tech-
niques comprise: ‘consistent’ advection (Norman, Wilson, & Barton 1980) using
van Leer (1977) or ‘piecewise parabolic’ interpolants (Colella & Woodward 1984)
on control volumes of staggered grids; non-reflecting Riemann boundary conditions
(Hedstrom 1979; Thompson 1987, 1990) ; tensor artificial viscosity (Schulz 1965);
pressure predictor (Norman & Winkler 1986).
As for the radiative line force, I followed Owocki et al. (1988) which includes technical
subleties like line-list cutoff; a Schuster-Schwarzschild photospheric layer to prevent
unstable growth close at the inner boundary; and the strict one-sidedness of the
direct force. The SSF method for treating the diffuse radiation field is described
in Owocki (1991, 1992), an unpublished draft from 1990, and in Owocki & Puls
(1996). Except for one workshop paper (Owocki 1999), all simulations published
so far are in radial direction only, assuming spherically symmetric flow. CPU time
requirements for 2-D wind instability simulations are huge. The present work is no
exception, and deals with spherical symmetric simulations only.
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7 The basic entity of wind structure. Figure 4 (taken from paper [1]) shows the
evolved wind structure. The pronounced features are: (1) broad rarefaction regions
of accelerating gas; this gas is (2) braked in strong reverse shocks, and fed into
(3) narrow, dense shells. (4) The shells propagate into gas which remains close to
stationary initial conditions. If forward shocks occur at all at the outer shell edges,
they are weak.
As a seed perturbation for wind instability, a coherent photospheric sound wave
of period 5,000 sec and pressure amplitude 1 percent is introduced at the inner
boundary of the model. The wave period determines the spacing of wind shells.
Namely, the perturbation wavelength in the photosphere, λ = aT = 0.009R∗ (with
sound speed a, period T , and stellar radius R∗), is stretched in the accelerating flow
by a factor v∞/a = 90. Indeed, the shell distance far out in the wind is 0.8R∗, cf the
figure.

8 Subshells and overtones. Figure 4 of paper [1] shows that 50 (!) overtones
of the photospheric sound wave can be clearly distinguished in the wind. There
is no indication of stochasticity at all in the wind, hence the structure is strictly
deterministic. This is rather unexpected from glancing at the velocity law between
2 and 5R∗, in which region the wind appears to be rather chaotic (not meant in
the new, technical sense of the word). Up to these heights, collisions occur between
multiple shells per photospheric excitation period. As noted in [1], these sub-shells
are related to non-linear steepening and harmonic overtones. The dynamical details
are still not clear. Figure 4 shows the mass loss rate in the wind as function of radius
and time. After initial transients have died out, the wind settles to a limit cycle. Per
photospheric perturbation period, three subshells are created and mutually collide
with each other up to around 3R∗.

9 Two-stage instability. Even for these periodic models the de-shadowing insta-
bility is sufficiently delicate that new details become visible when model parameters
are varied. Figure 5 below shows a run which differs from the above one mainly by a
shorter perturbation period of 1,000 seconds (besides this, it was performed 7 years
later). The difference is marked. In the new model, sub-shell collisions terminate
already around 2.5R∗. Afterwards, the shocks decay quickly, out to 6R∗. Between
7 and 9R∗, new shocks occur, which was not the case in the old model.
How can new shocks occur after the instability went into saturation, and left a fully
developed flow? What happens here is a second stage of the instability. We noted
above that negative velocity perturbations saturate quickly, and the wind remains
close to stationary initial conditions in regions ahead of pronounced shells. Looking
closely at the region from 4 to 6R∗ in Fig. 5, one sees a growing velocity perturba-
tion: in the evolved wind structure, eventually the pseudo-stationary regions become
unstable, too, via secondary perturbations. We expect that the latter are related to
overtones. The new perturbations steepen into new shocks. The shocks accelerate,
overtake and merge with the ‘old’ shock front from the first growth phase of the
instability. This creates a single, strong shock.

10 Lamb ringing. Introducing coherent sound waves as instability seeds allows to
study the ultimate fate of linear perturbations from harmonic stability analysis. But
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Figure 4: Wind mass loss rate as function of radius and time. After initial transients
have died out, the wind settles to a limit cycle. Per photospheric excitation period,
three subshells are created and mutually collide.

how relevant are coherent perturbations physically? Below we shall argue that, to
understand the observed X-ray emission from hot star winds, one has to refrain from
periodic, coherent perturbations and consider random ones instead. Still, relatively
coherent perturbations may be expected from stellar pulsations. They cannot be
modeled in 1-D simulations, where only pressure or p modes (sound waves) can be
excited. Internal gravity waves or g modes cannot propagate vertically through an
atmosphere, since lifting a planar atmospheric layer does not give a buoyancy force.
Interestingly, coherent atmospheric perturbations do actually not require an external
piston like stellar pulsations, but could be excited intrinsically in the atmosphere:
an atmospheric resonance frequency exists, Lamb’s acoustic cutoff.
As the reader may already get weary of deflections from the straight path brought
about by ‘unexpected’ hydrodynamic effects shooting in from left and right, we add
a historical note, trying to emphasize the importance of the acoustic cutoff. Lamb
built on earlier work by Rayleigh (1890), who first derived the dispersion relation
for sound waves in an isothermal barometric density stratification. Rayleigh failed
to see the physical relevance of the frequency ωa = a/2H defined by atmospheric
parameters (a the sound speed, H the scale height). Only after the detection of
a single-frequency, atmospheric response after the big Krakatao volcano eruption,
Lamb realized the importance of ωa as an atmospheric resonance. His argument
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Figure 5: Snapshot of an O supergiant wind velocity law and density stratification. A
periodic sound wave of 5,000 sec period is applied as photospheric seed perturbation
for the de-shadowing instability. Dots show individual mesh points. The numbers
in the upper panel refer to the sub-shells per excitation period. Taken from [1].

(Lamb 1908), which is far from trivial, can be found on p. 544 of his ‘Hydrodynamics’
(1932). Especially, he proves that in an isothermal atmosphere, a white-noise sound
spectrum evolves into a one-spike spectrum, the spike located at the acoustic cutoff
period. The acoustic cutoff is therefore indeed a resonance.
The acoustic cutoff was held responsible for the 5 minute oscillations of Sun (Schmidt
& Zirker 1963; Meyer & Schmidt 1967). But the appropriate acoustic cutoff period
is 3 to 4 min, not 5 min. Ulrich (1970) developed the alternative and correct theory
that the 5 min oscillations correspond to acoustic waves trapped in a resonance
cavity reaching from the deep solar interior to the top of the convection zone. This
established the field of helioseismology. Deubner (1973) observed a photospheric
subsignal of 3 min period, where the wave trains are correlated with the appearance
of bright granules. These granules are thought to struck the photosphere from below,
and excite Lamb ringing. For a review on solar 5 minute oscillations, see Stein &
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Figure 6: Snapshot of the wind velocity law, assuming a photospheric sound wave
with period 1,000 sec. Two stages of unstable growth are seen. In the second stage,
perturbations grow within the quasi-stationary gas ahead of dense shells, and lead
to secondary shocks.

Leibacher (1974).
Simulations of line driven winds from O stars show a self-excitation of the atmo-
sphere at the acoustic cutoff frequency. Its ‘perturbing’ influence on the outer wind
structure was occasionally noted in the literature (e.g., Blondin et al. 1990), but not
traced back to its physical cause. We close this excursion by expressing our belief
that ‘Lamb ringing’ could be responsible for rather coherent trains of pronounced
shells in hot star winds.

11 Reverse shocks. Reverse shocks occur because the instability steepens the
velocity law of the wind, and the fast gas is eventually decelerated. As a reminder,
we add here the distinction between reverse and forward shocks: forward shocks
overtake slow gas and accelerate it. In any reference frame, the shock is faster than
both the pre- and postshock gas. Forward shocks occur in explosions. Reverse
shocks, on the other hand, decelerate fast gas. The shock is slower than the gas on
both sides. A reverse shock occurs if a supersonic stream hits a wall or an obstacle.



30

12 Rarefaction regions. The rarefaction regions and reverse shocks in numerical
wind simulations are quasi-stationary. Seen from a comoving frame, they change
only little. Rarefaction regions can therefore, to a good approximation, be iden-
tified with (patches of) ‘steep’ wind solutions (Owocki, priv. comm.; Feldmeier et
al. 1997c). This type of solution to the stationary Euler wind equation will be
discussed in the next chapter.
If a stationary rarefaction region is to feed gas into a shell through a reverse shock,
a gas source must exist. Rarefaction regions lie directly above depression regions
of the velocity law (negative Abbott half waves). Here, the flow does not evolve,
but maintains the initial conditions. The depression region extends inwards, to the
outer edge of the next shell.

13 Contact discontinuity. Assuming a Sobolev line force and zero sound speed, a
contact discontinuity separates the rarefaction and depression regions. The velocity
law is continuous there but has a kink. Using terminology only introduced on
page 44, the wind jumps from the critical, initial conditions to a steep solution.
Because of subcritical mass flux in the latter, a density discontinuity occurs at the
contact discontinuity. Gas cannot penetrate through a contact discontinuity, hence
we are still left without gas source to feed the next outer shell.
Any discontinuity in a derivative of the fluid variables v and ρ propagates at char-
acteristic speed (Courant & Hilbert 1968). Indeed, the contact discontinuity moves
at sound speed. Yet, since a = 0, it moves along with the fluid. Allowing for finite
sound speed instead, the ‘gate opens’ and the rarefaction region eats slowly into
the depression. Constant mass flux is maintained through the rarefaction region.
The situation is sketched in Fig. 6, which also shows earlier and later stages in the
evolution of the instability. Figure 7 shows results from a numerical simulation.

14 Forward shocks and EISF noise. We come to what may at first seem a rather
subtle, technical issue. The central importance of line scattering to line driven wind
hydrodynamics will, as we hope, become clearer throughout the subsequent dis-
cussions. Owocki & Rybicki (1985) derived from linear stability analysis that the
perturbed diffuse radiation field turns anti-correlated density and velocity fluctua-
tions into correlated ones. Anti-correlated fluctuations steepen into reverse shocks,
correlated fluctuations steepen into forward shocks. In SSF, only the mean diffuse
radiation field is treated, and photospheric perturbations evolve into reverse shocks.
If, on the other hand, the perturbed diffuse radiation field is included, the phase
lag between velocity and density perturbations may be inverted, and strong forward
shocks may occur instead of reverse shocks. This argument was first made by Puls
(1994), and stimulated development of the EISF method.
Owocki & Puls (1999) proved from EISF simulations, which include the perturbed
scattered radiation field, that forward shocks are not important in the unstable wind.
EISF and SSF wind structure are essentially identical, and are both dominated by
reverse shocks. The reason is that phase reversal occurs only for short scale fluctua-
tions below the Sobolev length (Owocki & Rybicki 1985). Short scale perturbations
saturate at velocity amplitudes of order vth (see page 22). Correlated perturbations
and forward ‘shocks’ (if at all) appear therefore as short scale, small amplitude noise
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Figure 7: Evolution of winds structure from the de-shadowing instability
(schematic).

superimposed on the long scale, large amplitude tilt of the thermal band leading to
reverse shocks.

15 Are shells enclosed by forward shocks? Furthermore, forward shocks are not
required to enclose the shells on their outer edges, to prevent them from expanding
away. The argument is simple (Feldmeier et al. 1997c): shells are geometrically thin
and consist of subsonic post-shock gas. Hence, their internal sound crossing time
is small compared to the flow time, and hydrostatic equilibrium can be assumed.
According to the equivalence principle, the outward directed acceleration of the
shell by the line force is indistinguishable from an inward gravity binding a static
atmosphere. Hence, the shells are held together without the necessity of outer
forward shocks.

16 Shell densities. This same argument can be used to estimate shell overdensities
with respect to smooth, stationary gas densities. The inner-shell gas expands via
thermal pressure. This thermal pressure and shell acceleration define a (‘gravita-
tional’) scale height, H, which measures the shell thickness. We approximate the
line acceleration by v2

∞/nR∗, where v∞ is the wind terminal speed and n is ‘a few’;
hence, H = nR∗a

2/v2
∞. Assuming that all gas from within a rarefaction region of

average thickness λ/2 (λ being the perturbation wavelength) is fed into the shell;
and that λ ≈ R∗ for the longest perturbations which can still grow into saturation,
the overdensity, o, of shell gas with respect to stationary wind gas becomes,

o ≈ λ

2H
=

1

2n

(v∞
a

)2

. (19)

For v∞/a ≈ 100, this is of order ≥ 103, in good agreement with numerical simula-
tions. At large radii, radiative acceleration of the shell ceases, and H grows. The



32

Figure 8: How the rarefaction zone eats through the mass reservoir. The plot shows
subsequent snapshots of wind density (logarithmic) as function of radius (linear).
No scales are given on the axes, since the same structures occur for small or large
perturbation periods, at small or large separation between pronounced shells. The
dotted lines show the underlying, stationary wind model. The gas reservoir ahead
of dense shells is unaffected by instability, and has practically stationary densities.

shells should have expanded away, and the wind be homogeneous again by 30 to
100R∗. This, too, agrees with numerical simulations, see Fig. 6 in [4].

17 Inner shell velocity law. At first surprisingly, the velocity law has a negative
gradient inside shells (Owocki 1992; [3]). This is also true for solar wind shells
(Simon & Axford 1966). The reason is that the velocity law inside the shell reflects
the gas history. Gas lying close to the outer shell edge was shocked earlier than
gas lying near the inner edge, close to the reverse shock. The shell velocity law is
close to a stationary CAK velocity law, which means that the shell is constantly
accelerated on its trajectory. With the gas velocity at the reverse shock increasing
in course of time, a negative velocity gradient results inside the shell.
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§6 Wind structure and line profiles

Motivation. Quantitative spectroscopy of UV and optical lines (especially of Hα,
Puls et al. 1996) allows to determine mass loss rates, terminal speeds, and metal
abundances of the wind. All this information (plus the stellar radius) flows into the
wind-momentum luminosity relation, from which the stellar luminosity is inferred
(Kudritzki et al. 1999). The premise is that hot stars will in the near future become a
primary distance indicator of the same quality as Cepheids. It is therefore important
to understand the influence of wind structure on line formation.

P Cygni lines from 1-D, structured wind models. Puls et al. (1993, 1994)
calculated P Cygni line profiles for resonance lines from winds structured by the
de-shadowing instability. Radiative transfer in the highly non-monotonic velocity
law is solved for by iterating the source function, to account for multiple resonance
locations (Rybicki & Hummer 1978). The resulting line profiles agree well with
profiles from stationary wind models. This is at first surprising, given the ‘large
amount’ of structure in the wind, cf. Figures 4 and 5, and Figure 8 below. The
reason for the agreement is that most of the mass in the unstable, structured wind
still follows a smooth, CAK-type velocity law. The reasoning is actually more sub-
tle, and we refer to Puls et al. (1993) for an in-depth discussion. Some of the
differences between line profiles from stationary and unstable, time-dependent wind
models resemble observed variability features like black troughs, narrow absorption
components (NACs), and blue edge variability.

Observed line variability, and ideas of its origin. Besides X-ray emission,
which is discussed further below, the major observational evidence for pronounced
flow structure in winds from hot stars comes from variability in optical and UV
spectral line profiles. We give a brief, phenomenological overview of variability
features. The books edited by Moffat et al. (1994) and Wolf et al. (1999) are good
entry points in the large body of literature.
Of central importance are DACs (discrete absorption components), found in unsat-
urated P Cygni line profiles of OB stars, and so-called discrete wind emission ele-
ments, observed in flat-topped emission line profiles from W-R stars (Moffat 1994;
Lépine & Moffat 1999) and O supergiants (Eversberg, Lépine, & Moffat 1998). The
DACs come in company of ‘bowed variation contours’ or simply ‘bananas’ (Massa
et al. 1995). DACs are pure absorption phenomena, while bananas are modula-
tive. Bananas are explained by dense spiral-arm structures in the wind (Owocki
et al. 1995; Fullerton et al. 1997), similar to CIRs (co-rotating interaction regions)
in the solar wind. Their period is an even divisor (2 or 4) of the rotation period.
The origin of the DACs was first supposed in the de-shadowing instability, but this
was later excluded (Owocki 1994). Then CIRs were suspected as their origin, but
they can only explain the much faster bananas. Hence, DACs remain enigmatic.
A promising idea is that Abbott waves cause velocity plateaus in the wind which
lead to enhanced absorption and DACs (Cranmer & Owocki 1996). Interestingly,
velocity plateaus and not density enhancements were the first idea to explain DACs
(Hamann 1980). Discrete wind emission elements, on the other hand, are thought
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to be caused by compressible blob turbulence. Whereas turbulence in incompress-
ible fluids leads to an eddy cascade, supersonic or compressible turbulence leads to
a shock cascade. The eddy cascade is direct, with big eddies feeding energy into
small eddies. The shock cascade, on the other hand, is inverse: strong, fast shocks
overtake weak, slow shocks, and merge with them into one strong and fast shock.
Hence, energy is transferred from small to large scales. A connection may exist
between this compressible turbulence and the wind clouds thought to be responsible
for X-ray emission from hot stars. This is discussed in the following.

Wind clumping. Terminal speeds and mass loss rates are the central parameters of
line driven winds. They determine the metal entrichment of the interstellar medium,
and the star formation rate in starbursts. Furthermore, wind mass loss determines
the evolution of hot, massive stars. And finally, knowledge of wind parameters al-
lows to derive stellar luminosities and distances, a matter of prime importance in
astronomy. Hence, reliable measurements are needed for v∞ and Ṁ . However, the
mass loss rates of Wolf-Rayet stars, and probably also of O supergiants, are funda-
mentally affected by instability-generated flow structure. This was first realized by
Hillier (1984), who introduced wind clumpiness to explain observed electron scatter-
ing wings of emission line profiles in Wolf-Rayet stars. The line core depends linearly
on gas density, whereas the wings develop with density squared. Hence, line wings
are pronounced in clumped winds. Quantitative profile fits indicate that the wind
gas only fills 10 to 30 percent of the available volume around the star (Hamann
& Koesterke 1998b). This leads to a reduction of mass loss rates for W-R stars
by factors of 2 to 4, clearly demonstrating the importance of hydrodynamic wind
structure for quantitative spectroscopy of hot stars with winds. This reduction in
the formerly tremendous mass loss rates of W-R stars also opened the way to new,
quantitative modeling of their winds being radiatively driven (Lucy & Abbott 1993;
Springmann 1994; Gayley et al. 1995; Gräfener, Hamann, & Koesterke 2000).

§7 Including energy transfer

18 Radiative shocks. Wind shocks are radiative shocks, consisting of a narrow
viscous layer in which the gas is heated, and a subsequent cooling zone in which the
gas cools again by radiative losses. So far we assumed implicitly that radiative cool-
ing is very efficient in the wind, and that shock cooling zones are narrow. Radiative
shocks can then be viewed ‘from far’ as isothermal shocks, since both heating and
cooling occurs on microscopic, unresolved length scales. In this approximation, a
solution of the energy equation in the wind is not required. This is the reasoning
which led OCR to undertake isothermal wind calculations.
However, the numerical simulations discussed above make the assumption of isother-
mality questionable at certain heights above the photosphere, and isothermality
seems not justified a posteriori. We found that the wind gas is highly rarefied at
the end of a rarefaction region, before it undergoes the reverse shock transition.
Efficient radiative cooling cannot be assumed. To find a self-consistent wind struc-
ture including the effects of radiative cooling (possibly on long scales), Cooper &
Owocki (1992) included radiative cooling in numerical wind simulations for the first
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time. This led to the strange, unexpected results of unresolved cooling zones, and
all shocks were still isothermal. As the numerical mesh was chosen sufficiently fine
to resolve cooling zones, the conclusion was that the latter got somehow collapsed.

Advective diffusion. We offer in this and the next paragraph two alternative
explanations for cooling zone collapse. The explanations are slightly technical, and
the reader primary interested in the main physical argument may want to skip two
paragraphs ahead. – Owocki (1993, private communication; see also Cooper 1994)
explained shock collapse by advective diffusion. This is a manifestation of Field’s
(1965) local thermal instability. Consider a propagating temperature jump, i.e., a
contact discontinuity. Diffusive errors of the advection scheme spread the jump over
a few grid points. The gas at intermediate temperatures cools better than hot gas:
in pressure equilibrium, cold gas is denser than hot gas, giving more collisions and
stronger cooling. The broadened jump is sharpened again by the different cooling
rates, and thereby gets slightly shifted into the hot gas. The jump introduces new
diffusive errors, and the cycle repeats. Advective diffusion should occur within the
viscous shock layer, which is spread out over ≈ 3 grid points by artificial viscosity.
The shock front ‘eats’ then through its own cooling zone. This argument assumes
that errors pile up, as they indeed do at a contact discontinuity where always the
same gas is located. But this is not the case in a shock transition, where gas passes
through. A detailed calculation shows that only a slight modification of the cooling
zone results from advective diffusion, but no collapse [1].

19 Oscillatory thermal instability. Besides Field’s local thermal instability, a
second, global thermal instability occurs in radiative shocks. This instability was
found in numerical simulations of accretion columns onto white dwarfs (Langer et
al. 1981, 1982) in magnetic (AM Her) cataclysmic variables. The linear stability
analysis is due to Chevalier & Imamura (1982), and the instability mechanism is
explained in detail in Langer et al. (1982), Gaetz, Edgar, & Chevalier (1988), and
Wu, Chanmugam & Shaviv (1992). The instability is of oscillatory type, and causes
periodic contraction and expansion of the cooling zone. The contractions are strong,
and a fine grid is required to resolve them. On a coarse grid, the contracted zone
drops at some point below grid resolution, and an isothermal shock remains [1].
Obviously, there is no thermal instability for an isothermal shock: the shock will not
re-expand, and the collapse is permanent. We add as a side remark that oscillating
radiative cooling zones show rich dynamics. For example, tiny condensations within
the cooling zone can grow into secondary shocks and propagate through the cooling
zone (Innes et al. 1987).

Altering the cooling function. We assume in the simulations below that radiative
cooling is parameterized in power law form, Λ = Aρ2T δ (units erg s−1 cm−3). The
parameter δ is derived from fits to calculated cooling functions (Cox & Tucker 1969).
Global thermal instability occurs for δ ≤ 1/2. We find that the above cooling
zone collapse is prevented when an artificial, stable exponent δ > δc is used at low
temperatures, as is demonstrated in Fig. 6 of [1]. Typically, assuming δ = 2 at
T < 5 × 105 K prevents cooling zone collapse in wind simulations. X-ray spectra
of O stars, in which we are primarily interested, indicate temperatures between 106
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and 107.5 K. Hence, X-ray emission should be largely unaffected by the modified
cooling function.

20 Shock destruction. How does radiative cooling influence the wind structure?
What happens at intermediate and large radii in the wind, when radiative cooling
ceases to be efficient in rarefied gas undergoing a reverse shock transition? Using
the above method, we find in [1] that isothermality is a good approximation for
O supergiant winds out to ≈ 5R∗. At these radii, reverse shocks are suddenly
destroyed, in marked contrast to their gradual decay in isothermal calculations,
which continues out to ≈ 20R∗. A direct comparison is made in Figures 1 and 10
of [1].

21 Shocks becoming adiabatic. The reason for shock destruction is the deple-
tion of intershell gas. Radiative cooling becomes inefficient, and the cooling zones
broaden as they become adiabatic. This drives the shock front through the rar-
efaction region, towards the next inner shell. Since the shock propagates into the
preshock gas, the postshock temperature raises, which makes radiative cooling even
more inefficient, pushing the shock further into the gas. Actually, this is the very
mechanism of the global thermal instability of Langer et al. (1981). Eventually, the
shock merges with the next inner shell (this may create forward shocks, cf. page 40).
Tenuous, hot gas at temperatures > 107 K fills the whole space between shells.
Why does shock destruction occur so suddenly around 5R∗? At this height, the
gas reservoir ahead of a shell, which remains first at stationary conditions, is used
up, i.e., was fully fed into the next outer shell. Further sub-shells – we term them
‘clouds’ in the following, for reasons which will become apparent – cannot occur in
between shells. These clouds propagated outwards and pushed ahead of them the
adiabatic shock front which tried to expand in the opposite, inward direction. Once
the clouds cease, the shock front can expand freely through empty intershell space,
leaving hot, thin gas.

22 Outer corona. Volume filling factors of hot gas at 106 to 107 K can almost reach
unity between 5R∗, the location of shock destruction, and 20R∗, where hot gas has
significantly cooled by adiabatic expansion [1, 4]. In winds from OB supergiants, X-
ray emission from this low density gas is negligible. It is still possible that an X-ray
emitting, outer corona occurs in thin winds from B stars near the main sequence.
Here, the first strong wind shock can heat large fractions of the gas. UV line profiles
show indeed that the cold wind vanishes before it reaches terminal speed (Lucy &
White 1980; Hamann 1981b).

§8 X-rays and clouds

23 Clouds. The sub-shells or clouds are not quite the accidental, secondary feature
as which they were treated so far (cf. secondary shock formation on page 26.) We
will argue in the following that clouds are a primary agent in explaining X-rays
from hot, massive stars [4]. We distinguish from now on strictly between shells (or
shell fragments) and clouds. Shells (shell fragments) are instability generated, highly
overdense as compared to stationary wind densities, and have probably large lateral
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scale even after Rayleigh-Taylor fragmentation (cf. the sketch in Figure 2). Clouds,
on the other hand, are turbulence-induced, have roughly stationary wind densities,
and, if turbulence is approximate isotropic, a tiny lateral scale.
Hillier et al. (1993) estimated that OCR wind models should fail by one or two
orders of magnitude to produce the observed X-ray emission from hot stars. The
reason is the low density of shock heated gas immediately behind the reverse shock.
The gas density lies orders of magnitude below stationary wind densities. Note that
X-ray emission, as a collisional process, scales with the density squared. We found in
[1] that large-amplitude, periodic perturbations in the photosphere lead to chaotic
wind structure, whereas strictly deterministic flow results from low-amplitude per-
turbations (cf. Figures 10 and 12 in [1]). We speculated, therefore, that random or
turbulent boundary perturbations, still of small amplitude, could lead to an ‘active’
wind showing enhanced X-ray production. This is indeed the case, and clouds are
the means of enhanced X-ray emission. For random boundary perturbations, wind
clouds are prevalent, far above the level of a few ‘overtone’ sub-shells in models with
coherent base perturbations (Figure 4). Clouds are dense and collide with shells,
leading to strong X-ray emission.

24 Langevin boundary conditions. To mimic photospheric turbulence, a veloc-
ity perturbation, u, is applied on the inner simulation boundary [4]. The perturba-
tion fulfills the Langevin equation for a continuous Markov chain, du/dt + u/tc =
Γ(t). This equation is integrated in time-forward manner. The correlation time, tc,
is a free parameter. We choose a value not too far from the acoustic cutoff period. Γ
is the stochastic force, with a white-noise correlation function. The force amplitude
is the second free parameter, typically chosen at 30% the speed of sound. This is well
below the limit of measured turbulent velocity dispersion in hot star atmospheres
(Conti & Ebbets 1977). The power law index of this turbulence model is −2, not
too different from the Kolmogorov index −5/3 for eddy turbulence. Some classic
papers on the Langevin equation are collected in Wax (1954).

Figure 9: Clouds, marked with filled circles, in a snapshot of the density stratification
in an O supergiant wind.
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25 Cloud ablation. We expect that the average time interval between the passage
of two dense shells is not too different from the acoustic cutoff period. Clouds,
on the other hand, are excited at much shorter periods. They form in the dense
gas ahead of a shell, i.e., in the decelerating part of a harmonic perturbation where
unstable growth quickly saturates. The birth density of clouds is the stationary wind
density, and they roughly maintain this density until collision with the next outer
shell. In Fig. 8, clouds are marked explicitly in a snapshot taken from a numerical
simulation. Figure 9 shows the cloud dynamics, their propagation through empty
rarefaction regions between shells, and collision with the latter.

Figure 10: Clouds, marked with +, ×, M, �, and ∗, are ablated from the gas reservoir
ahead of a pronounced shell, propagate through the rarefaction region, and collide
with the next outer shell. Compare with Fig. 8 on page 32.

A model case: ζ Ori. The O9 supergiant ζ Ori is a standard object for X-
ray observations from O stars. Most recently, it was the first O star for which
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an X-ray line spectrum was taken with the Chandra satellite. With excellent
Rosat observations available at the time (1996), we made ζ Ori the test case for
the turbulent-cloud scenario. Figure 13 in paper [4] shows a snapshot of the wind
structure of ζ Ori. The X-ray spectrum from this snapshot is shown in Fig. 14 of
the same paper. The spectrum is calculated using a formal integral approach on the
1-D, time-dependent wind. K-shell opacities are assumed for cold gas, Raymond-
Smith emissivities for hot gas. The model flux is only a factor of 2 or 3 below the
observed one, but not by factors of 10 to 100 as estimated by Hillier et al. (1993)
from OCR models.

26 Cloud-shell collisions. Strangely then, Figure 15 in [4] shows that all the X-
ray emission arises from a single shock at 4.5R∗. The gas density in this shock lies
between ±1 dex of the stationary wind density, far higher than in the rarefaction
region. What happens at this location? Figure 17 in [4] shows that a collision of
a fast cloud with a dense shell takes place at this time, at this radius. The figure
shows also that any appreciable X-ray emission from the wind is due to cloud-shell
collisions.

27 X-ray flux constancy. From Fig. 17 in [4] it is also evident that no more than
one or two cloud collisions take place at any time. This leads to strong variability of
the X-ray flux, ±1 dex around mean in spherically symmetric models. By contrast,
observed X-ray flux variations for ζ Ori are a mere few percent. We expect that
spherical symmetry is a very poor approximation for turbulent structures. A realistic
wind model should instead consist of independent radial cones, each with its own
cloud-shell collisions taking place. A few thousand such cones would guarantee the
observed flux constancy.

28 X-ray variability. There are only few detections of X-ray variability so far.
Berghöfer & Schmitt (1994) report on an episodic raise in the Rosat X-ray count
rate of ζ Ori. This gained wide attention, for example in the science section of the
New York Times. The possible origin for the raise in count rates is the breakthrough
of a dense shell through an X-ray photosphere. The event was found in one energy
band only. Oskinova et al. (2001) propose observations at higher signal-to-noise, to
detect different variability levels in soft and hard bands. This would allow to test
certain aspects of the shock model.
Berghöfer et al. (1996) find periodic X-ray variability in ζ Pup, which maybe caused
by absorption of X-rays in a co-rotating interaction region (a spiral arm) in the wind.
Oskinova (2001, priv. comm.) finds other examples of periodic X-ray variability in
ASCA observations of O stars. We recently proposed a long (180 ksec) observation
of the O star ξ Per with the Chandra satellite, to find first signatures of X-ray line
variability. The reason for this expectancy is that this star has amongst the shortest
recurrence time scale for DACs (Kaper et al. 1999; de Jong et al. 2001).

O stars observed with ROSAT. Dedicated Rosat observations are available for
42 stars in the spectral range from O3 to O9. These data were analyzed assuming a
2-component wind, consisting of cold, X-ray absorbing gas and a random ensemble of
X-ray emitting shocks. Density and temperature stratifications of radiative cooling
zones behind shocks are included in this approach (Chevalier & Imamura 1982; [3]).
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These postshock stratifications allow to reduce the number of free fit parameters
to the observations from 4 (Hillier et al. 1993) or 3 (Cohen et al. 1997) to 2 (see
[3]). Application of a simplified version of the method is described in Kudritzki
et al. (1996). We find there that the scatter in the Lx/Lbol relation for O stars is
smaller than from Einstein data. We currently try to decide whether this scatter
is caused by a dependence of Lx on a second wind parameter, besides Lbol.

29 Adiabatic shells. Paper [3] also contains an analytic treatment of outer, adi-
abatic shocks, whose cooling length is not small compared to the wind scale. We
follow there a classic paper by Simon & Axford (1966) on solar wind shells.

30 Forward shocks, again. We discuss in the appendix of [3] that shock destruc-
tion as described above can be mimicked by a simple numerical test. Instead of
calculating a fully structured wind model using an unstable line force, we consider
multiple adiabatic shells in a flow expanding spherically symmetric, and at constant
speed. The merging of reverse shocks with the next inner shell leads there to a train
of forward shocks. Hence, it is presently not quite clear whether insufficient radiative
cooling causes shock destruction or shock transformation (reverse to forward). This
question is of some relevance since, for the O supergiant ζ Pup, soft X-rays originate
from very large radii, far above the location of the final cloud-shell collisions (Hillier
et al. 1993; Schulz et al. 2000).

Future work on X-ray emission. What determines the azimuthal scale of shell
fragments and clouds? This is presently the most pressing question. The demand
on computer time is huge for 2-D hydrodynamic modeling of the wind instability.
One has to employ computational tricks, like using a specially designed mesh for
a 3-ray radiative transfer (Owocki 1999) or 2nd order Sobolev approximation [5].
Both methods have their caveats: the specially designed mesh stretches too strongly
as function of radius, and instability generated structure may ‘fall between the
mesh nodes’. For 2nd order Sobolev approximation, inclusion of nonlocal couplings
(shadowing of one shell by another) may be impossible (Wegner 1999).
Another major question is: why are X-rays from O stars universal? Why does
the intricate wind hydrodynamics and radiative transfer lead to a simple Lx/Lbol =
10−7? And why does universality break down for thin winds from B stars (Cassinelli
et al. 1994) and for Wolf-Rayet stars (Baum et al. 1992; Wessolowski 1996; Ignace,
Oskinova, & Foullon 2000)?

31 Symmetric X-ray lines. With the launch of the X-ray satellites Chandra

and Xmm, observations of X-ray lines from O stars has become possible. First
observations of O stars led to the unexpected result that X-ray emission lines in
ζ Ori und ζ Pup (the usual suspects) are symmetric and almost not blue-shifted
(Schulz et al. 2000; Kahn et al. 2001; Waldron & Cassinelli 2001). The line width is
roughly half the terminal wind speed. These results are puzzling if X-rays originate
indeed in a dense wind, where one expects different optical depths for photons from
the front and back hemisphere of the star, resulting in asymmetry or effective blue-
shift of the line profile. However, Owocki & Cohen (2001) have recently shown that
even in a homogeneous wind, observed line symmetry can be partially attributed to
low instrumental resolution. Even better, recent Chandra observations of ζ Pup
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“show blue-shifted and skewed line profiles, providing the clearest evidence that the
X-ray sources are embedded in the stellar wind” (Cassinelli et al. 2001).
This should be the final ‘out’ for coronal models of X-ray emission from O supergiants
(Hearn 1972, 1973; Cassinelli & Hartmann 1977). Coronal model were practically
excluded due to missing K shell absorption (Cassinelli & Swank 1983; Cohen et
al. 1997) and the missing green coronal iron line (Baade & Lucy 1987). Recently,
however, coronal models gained again some attention (Waldron & Cassinelli 2001).
We plan to perform line-synthesis calculations in a clumped wind, where almost all
gas is confined to narrow shell fragments. If the lateral scale of the fragments is
not too small, photons from the stellar back hemisphere may escape to the observer
by passing between neighboring shells (cf. Figure 2). Furthermore, on the back
hemisphere one looks onto the X-ray emitting, inner rim of the shell; whereas on the
front hemisphere, the shock is hidden behind a dense, absorbing shell. Both effects
(lateral escape between neighboring shells; inner shell rim emission only) level off
differences between the red and blue line wing.

32 Clouds and EISF structure. We add another technical remark. The turbulent
wind clouds described above and in [4] have short length scales of a few mesh points
only. They were calculated using the SSF method, which does not account for the
perturbed diffuse radiation field. On short scales, the latter may turn anti-correlated
fluctuations like clouds into correlated ones. Future EISF simulations are therefore
vital to the cloud model. To achieve proper resolution of the thermal band, an
adaptive mesh technique will be used.

X-rays in stationary wind models. The focus of the present work is on wind
hydrodynamics, with a highly simplified treatment of NLTE (using a power-law
line list; and treating one resonance line only) and radiative transfer (using Sobolev
approximation, SSF, or EISF). The complementary viewpoint: full NLTE and radia-
tive transfer, and assuming parameterized hydrodynamics is of central importance
for quantitative spectroscopy of hot stars. Precise UV fluxes from OB stars are re-
quired to calibrate the wind momentum-luminosity relation (Kudritzki et al. 1999);
to determine ionizing fluxes in H ii-regions (Sellmaier et al. 1996); and for population
synthesis in starbursts (Leitherer et al. 1999) and in blue galaxies at redshifts z > 3
(Steidel et al. 1996). In synthesising UV fluxes, the full statistical equilibrium prob-
lem of the wind is treated, however, assuming stationary flow (Pauldrach et al. 2001,
and literature therein). To explain the observed ‘superionization’, inclusion of X-
rays is still required (Pauldrach et al. 1994, MacFarlane et al. 1994). The shocks
are treated in parameterized form, on a underlying, monotonic velocity law. Fur-
thermore, inclusion of an artifically high microturbulence is necessary to reproduce
observed UV line profiles (Hamann 1980). In future calculations on structured wind
models, microturbulence and shock strength will no longer be independent, free pa-
rameters, but will both appear as consequence of wind hydrodynamics. Lucy (1982a,
1983) and Puls et al. (1994) showed that black troughs in saturated P Cyg profiles,
so far explained by microturbulence, indeed result from an instability-generated
velocity law.
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High mass X-ray binaries. Neutron stars or black holes which orbit an O or
B supergiant act as point-like probes in the wind. Bondi-Hoyle accretion of the
supersonic wind turns the compact object into a strong X-ray source which ionizes
a large volume of the wind gas. Line driving stalls in this overionized region, and a
dense wake forms via the Coriolis force. The beautiful and intricate wind dynamics
is discussed by Blondin et al. (1990) and Blondin, Stevens, & Kallman (1991). The
presence of the dense wake can be infered from asymmetries of X-ray lightcurves at
ingress and egress. For the system Vela X-1, the azimuthal extent of the wake is
consistent with the observed asymmetry [2]. Kaper, Hammerschlag-Hensberge, &
Zuiderwijk (1994) suggest that observed, short-term variability of X-ray lightcurves
is due to fluctuations in the wind velocity as caused by the de-shadowing instability.
Hence, high-mass X-ray binaries are another test case to diagnose line driven flow
structure.
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CHAPTER 3: RUNAWAY WINDS

§9 Solution topology

We turn now to a simpler level in our description of line driven wind hydrodynamics,
and consider the simplest line force possible, in first order Sobolev approximation.
The wind is then no longer subject to de-shadowing instability. We consider why
line driven winds from stars and accretion disks adopt a unique, critical solution out
of an infinite number of possible solutions, the latter falling into two classes: shallow
and steep.
This unique solution is defined as follows (Castor, Abbott, & Klein 1975): it starts
in the photosphere as the fastest possible, shallow solution, and crosses at some
critical point smoothly and differentiably to the slowest, steep solution. From all
accelerating wind solutions, this is the one with maximum mass loss rate. Shallow
solutions are discarded as global wind solutions because they break down at large
radii, becoming imaginary there. Steep solutions, on the other hand, are everywhere
supersonic. They cannot connect to the wind base which is assumed to be subsonic,
and are also discarded as global wind solutions.
There are indications that this reasoning is too restrictive (see paper [6]): (1) Shallow
solutions break down around 300R∗. Why then do time-dependent hydrodynamic
simulations which extend out to 10R∗ always adopt the critical solution, instead of
remaining on shallow initial conditions? (2) Spherical expansion work, as a thermo-
dynamic effect, scales with the gas temperature and sound speed. It is not inherent
to line driving. (3) For line driven winds from accretion disks, neither shallow nor
the critical solution reach infinity, because the disk flux drops off steeper than disk
gravity [6]. Unavoidably, the wind has to decelerate at large heights. This is unprob-
lematic, since the wind speed is above the local escape speed, both for the critical
and for sufficiently fast, shallow solutions. (4) Once the wind is allowed to deceler-
ate in certain regions, an initially shallow solution could jump to the decelerating
branch when the speed is larger than the escape speed, and reach infinity. Wind
deceleration is also discussed by Koninx (1992) and Friend & Abbott (1986), the
latter authors modeling velocity laws of rotating O star winds.

A simple wind model. We consider now a simple model for line driven winds
which allows to discuss the above questions in detail. The model is used in numerical
simulations [8, 9, 10] to study wind runaway caused by Abbott waves. In Sobolev
approximation, the line force scales as

gl ∼
∫
dω n In

(
ρ−1 ∂nvn

)α
. (20)

The integral is over solid angle, n is the unit direction vector, and I is the frequency-
integrated intensity of the radiation field. A CAK line distribution function is as-
sumed, and we adopt α = 1/2 for simplicity in the following. Furthermore, the
velocity gradient is taken out of the integral, assuming that the gradient of the flow
speed in flow direction gives the main contribution. This is equivalent to the CAK
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point star approximation. Assuming 1-D, planar geometry,

gl(z) ∼ F
√
ρ−1∂v/∂z, (21)

with frequency-integrated, radiative flux F in z direction. We assume that F is
constant, but g(z) may be an arbitrary function. Constancy of both F and g leads to
solution degeneracy for zero sound speed (Poe et al. 1990). If the disk is extended and
isothermal (the latter is a bad approximation), F is indeed constant at sufficiently
small z. For g we choose

g(z) =
GM

q2

z/q

1 + (z/q)2
, (22)

which roughly resembles effective gravity (gravity minus centrifugal force) close to
a thin accretion disk. M is the mass of the central object, q is the footpoint radius
in the disk. Note that g(0) = 0. Furthermore, the sound speed is set to zero, which
turns the Euler equation into an algebraic equation in vv′. Note that the Sobolev line
force is independent of vth, and therefore of a. The continuity and Euler equation
become,

C ≡ ρ̇+ (ρv)′ = 0, (23)

E ≡ v̇ + vv′ + g − K̃
√
v′/ρ = 0. (24)

Dots indicate temporal, primes spatial differentiation. The flux was absorbed into
K̃. The Euler equation was divided through by GM/q2, which means that speed is
measured in units of the local Kepler speed,

√
GM/q, height in units of q, and time

in units of a Kepler flow time through a distance q. We keep the symbols v, z, and
t also for the normalized quantities. For a stationary wind, the continuity equation
becomes ρv = const. We introduce m = ρv/ρcvc and w′ = vv′. Subscripts c refer
to the critical or CAK solution, to be introduced shortly. The Euler equation turns
into,

w′ + g −K
√
w′/m = 0, (25)

For stationary winds, m and w′ replace ρ and v as fundamental hydrodynamic
variables.

Shallow and steep solutions. At each z, (25) is a quadratic equation in
√
w′,

with solutions
√
w′ =

K ±
√
K2 − 4gm

2
√
m

. (26)

Solutions with ‘−’ are termed shallow, solutions with ‘+’ are termed steep. For
sufficiently small m, shallow and steep solutions are globally defined. At the critical
point of the critical solution, termed zc from now, the square root vanishes, and
two globally defined shallow and steep solutions merge. By definition, m = 1 for
the critical solution. For m > 1, shallow and steep solutions become imaginary in
a neigborhood of zc. In this region, gravity g overcomes line driving ∼ K. These
failing winds are termed overloaded [8]. We may also allow for v′ < 0, by introducing√
|v′| in the line force. This expresses that the Sobolev force is blind to the sign of
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v′. A single decelerating branch results from this generalization. Figure 11 shows
the ‘solution topology’ of the quadratic equation (25) in the zw′ plane (see also
Fig. 3 in CAK; Fig. 3 in Cassinelli 1979; Fig. 4 in Abbott 1980; Fig. 1 in Bjorkman
1995; and Fig. 6 in [6]).

Figure 11: Solution topology of the equation of motion (25) for stationary winds.
The right panel shows acceleration solutions, the left panel decelerating ones. For
the latter,

√
|w′|/m was assumed in the line force. Note the saddle point at x =

1, w′ = 1/2, which is the CAK critical point for Abbott waves.

From (26), the critical point is a saddle point of E in the zw′ plane (Bjorkman
1995). Note the important difference that the sonic points for the solar wind and
the Lavalle nozzle are saddle points in the zv plane instead. The critical point be-
ing a saddle, the shallow solution with m = 1 has a discontinuity in v′′ at zc. This
discontinuity is avoided by switching to the steep solution. Discontinuities in deriva-
tives of the fundamental hydrodynamic variables lie on characteristics (Courant &
Hilbert 1968). Characteristics are space-time curves along which Riemann invari-
ants or wave amplitudes are constant, or change according to an ordinary, not a
partial differential equation. Indeed, the flow becomes super-abbottic at the CAK
critical point (Abbott 1980).
The constant K can be expressed in terms of flow quantities at the critical point.
Setting the square root in (26) to zero gives, for m = 1,

K = 2
√
gc, (27)

where gc = g(zc). Since the critical point is a saddle of E in the zw′ plane, ∂E/∂zc =
∂E/∂w′c = 0 holds. The latter (‘singularity’) condition leads to w′c = gc. The former
(‘regularity’) condition leads to dg/dzc = 0, hence the critical point coincides with
the gravity maximum. This reveals the role of the critical point as bottleneck of
the flow. For height-dependent F , g/F 2 determines the nozzle function instead. If
F and g are constant, the critical point degenerates, and each location z becomes
critical (for zero sound speed). Inserting k and w′c, the general, stationary wind
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acceleration becomes,

w′ =
gc
m

(1±
√

1−mg/gc)2. (28)

The velocity law v(z) is found by (analytic or numerical) quadrature of w′ = vv′.

§10 Abbott waves

Since Abbott waves are of central importance in the following, we derive them in
three different ways: by dispersion analysis [9]; characteristic analysis [10]; and
Green’s function analysis [10]. The first and last are necessarily linear, but the
characteristic analysis holds for arbitrary wave amplitudes. This should not mask the
fundamental limitation of our approach: a derivation of Abbott waves including line
scattering in any approximation (SSF, EISF) going beyond Sobolev approximation
was not given so far, due to mathematical complexities.

Dispersion relation. For all wind solutions, K = 2
√
gc holds. Inserting this into

the time-dependent Euler equation,

v̇ + vv′ = −g +
√

2ρcvc v′/ρ. (29)

We consider small harmonic perturbations on a stationary wind solution ρ0, v0 (not
necessarily the critical solution), ρ = ρ0+ρ1 exp[i(kz−ωt)], v = v0+v1 exp[i(kz−ωt)].
Linearizing the continuity and Euler equation gives,[

−i ω
v′0

+ iχ+ 1

]
ρ1

ρ0

+ (iχ− 1)
v1

v0

= 0, (30)

1

q0

ρ1

ρ0

+

[
−i ω
v′0

+ 1 + iχ

(
1− 1

q0

)]
v1

v0

= 0, (31)

where χ ≡ k v0/v
′
0 and q0 =

√
2m0w′0 were introduced. Setting the determinant

of the system to 0 gives the dispersion relation ω(k). In the WKB approximation,
χ � 1, the phase speed and growth rate of the downstream mode (subscript +)
become, in the observers frame,

vφ = Re(ω+)/k = v0, Im(ω+) = −ε. (32)

The small damping term −ε is of no further consequence. In the comoving frame,
the wave speed is 0 in this zero sound speed limit: the downstream mode consists
of sound waves. For the upstream or (−) mode,

vφ = Re(ω−)/k = v0

(
1− 1/q0

)
, Im(ω−) = 0. (33)

This new wave type is caused by radiation pressure, and is termed an Abbott wave
(after Abbott 1980). For shallow solutions, q0 < 1, and Abbott waves propagate
towards smaller z: shallow solutions are the analog to solar wind breezes. For steep
solutions, q0 > 1, and the waves propagate towards larger z. At the critical point,
m = 1, w′c = gc, and q0 = 1, hence the critical point is a stagnation point for Abbott
waves. At smaller (larger) radii, the waves propagate towards smaller (larger) z.
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For shallow solutions with m0 � 1 and w′0 � w′c, Abbott waves propagate inward
at arbitrary large speed. Wave propagation along shallow solutions was not treated
so far in the literature, as a consequence of Abbott’s (as it appears now: erroneous)
postulate that “a line driven wind has no analog to a solar breeze.” (Abbott 1980)

Abandoning steep solutions. Steep solutions are super-abbottic everywhere,
and cannot communicate with the wind base. Hence, their mass loss rate cannot
converge to an eigenvalue. Numerical simulations show indeed that steep solutions
are stable to almost any perturbations [9]. The perturbations are advected to the
outer boundary and leave the mesh. Steep solutions are in the following of not much
interest. Still, they may have physical significance, and we encountered them already
before: the quasi-stationary rarefaction regions in time-dependent simulations of the
de-shadowing instability are steep solution ‘patches’.

Characteristic analysis. The above dispersion analysis holds for linear waves.
We turn now to a characteristic analysis for arbitrary amplitudes. The equations of
motion for arbitrary g are written as,

C(ρ, v) = ρ̇+ vρ′ + ρv′ = 0, (34)

E(ρ, v) = v̇ + vv′ + g(z)− 2Γ
√
v′/ρ = 0, (35)

with Γ ≡ √gcρcvc. C and E are brought into advection form without further approx-
imation. A first-order system of partial differential equations is called quasi-linear if
it is linear in all derivatives of the unknowns (ρ and v here). Usually, characteristics
are defined for quasi-linear systems. Equations (34, 35) are not quasi-linear, due to
the presence of

√
v′. Courant & Hilbert (1968) show that characteristic directions,

a, for general, nonlinear systems are given by∣∣∣∣−aCρ̇ + Cρ′ −aCv̇ + Cv′
−aEρ̇ + Eρ′ −aEv̇ + Ev′

∣∣∣∣ = 0. (36)

The symbol a, so far reserved for the sound speed, refers now to any characteristic
speed. The distinction should be clear from the context. For quasi-linear systems,
the matrix in (36) becomes independent of differentials ρ̇, v′, etc. For the present
case, however, ∣∣∣∣−a+ v ρ

0 −a+ v − Γ/
√
ρv′

∣∣∣∣ = 0, (37)

or, in the observers frame,

a+ = v, a− = A = v − Γ

ρv′
, (38)

with Abbott speed A. For small perturbations,

A = v (1−
√
gc/mw′) = A0, (39)

with A0 from the dispersion analysis above. To bring the hydrodynamic equations
into characteristic form [10], the system must be made quasi-linear, by applying the
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following trick (Courant & Hilbert 1968): the Euler equation is differentiated with
respect to z, and a new variable f = v′ is introduced,

ḟ + vf ′ + f 2 − Γ√
fρ

(
f ′ − f ρ

′

ρ

)
= −g′. (40)

This equation is linear in ḟ and f ′. The new system consists then of the continuity
equation, the Euler equation (40) for f , and the defining relation f = v′. Re-
bracketing (40) and multiplying by ρ,

ρḟ + ρAf ′ + ρf 2 +
Γ√
fρ
fρ′ = −ρg′. (41)

Replacing ρf using the continuity equation,

−ρg′ = ρḟ + ρAf ′ − fρ̇−
(
v − Γ√

fρ

)
fρ′

= ρḟ + ρAf ′ − fρ̇− Afρ′ (42)

= ρ2 (∂t + A∂z)
f

ρ
.

The characteristic (or advection) form of the Euler equation is therefore,

(∂t + A∂z)
v′

ρ
= −g

′

ρ
. (43)

We assume that WKB approximation applies, i.e., that the temporal and spatial
derivatives on the left hand side are individually much larger than the right hand
side, hence, the latter can be neglected. In a frame moving at speed A, the function
v′/ρ is then constant, and can be interpreted as a wave amplitude propagating with
speed A. The Sobolev optical depth is proportional to the inverse of v′/ρ, which
indicates that Abbott waves are indeed a radiative mode. Introducing f = v′ in the
continuity equation, the latter is already in characteristic form,

(∂t + v∂z) ρ = −fρ. (44)

Since it contains no derivatives of ρ or f , fρ is an inhomogeneous term. The Riemann
invariant, ρ, is no longer constant along the v characteristic: WKB approximation,
which would mean ρ′/ρ � v′/v, does not apply. Since ρ scales with gas pressure,
this mode can be identified with sound waves.

Green’s function for Sobolev line force. Finally, we derive the Green’s function
for Abbott waves in Sobolev approximation. The Green’s function gives the response
of the wind to a localized, delta function perturbation in space and time, and is
complementary to the harmonic dispersion analysis of Abbott (1980) and Owocki &
Rybicki (1984). Since localized perturbations consist of many harmonics, a Green’s
function describes wave interference. This is clearly seen for water waves, whose
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Green’s function is known from Fresnel diffraction in optics (Lamb 1932, p. 386).
For simplicity, we consider a single, optically thick line only, with Sobolev force,

gl(z) = A
∂v(z)

∂z
. (45)

Density ρ was absorbed into the constant A. We assume WKB approximation to
apply (slowly varying background flow), and consider only velocity perturbations:
the Abbott wave amplitude v′/ρ from characteristic analysis is not annihilated by
this restriction. The linearized Euler equation for small perturbations is

∂

∂t
δv(z, t) = δgl(z, t) = Aδv′(z, t). (46)

The Green’s function problem is posed by specifying as initial conditions,

δv(z, 0) = δ(z − z0). (47)

The solution is obtained by Fourier transformation with respect to z. We use the
conventions, for an arbitrary function F (bars indicate Fourier transforms),

F̄ (k, t) =

∫ ∞
−∞

dz e−ikz F (z, t), F (z, t) =
1

2π

∫ ∞
−∞

dk eikz F̄ (k, t). (48)

Fourier transforming (46) gives

∂

∂t
δv(k, t) = ikAδv(k, t). (49)

The right hand side was obtained by integration by parts, assuming δv(−∞, t) =
δv(∞, t) = 0. This will be shown a posteriori. The solution of (49) is

δv(k, t) = beikAt, (50)

with constant b. Fourier transforming the initial conditions (47),

δv(k, 0) = e−ikz0 = b, (51)

hence,
δv(k, t) = eik(At−z0). (52)

Finally, Fourier transforming back to z space,

δv(z, t) =
1

2π

∫ ∞
−∞

dk eikzeik(At−z0) = δ(z − z0 + At). (53)

The delta function perturbation propagates without dispersion towards smaller z,
at a speed −A. Also, δv = 0 at z = ±∞, as assumed above. A is the Abbott speed,
as is seen by inserting a harmonic perturbation, δv = δv ei(ωt−kz), in (46), giving for
the phase and group speed,

ω

k
=
dω

dk
= −A. (54)
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The result that a delta function peak propagates without dispersion at speed −A
could have been foreseen from the phase speed of linear Abbott waves: vφ is inde-
pendent of λ, hence no dispersion occurs and no wave interference between different
harmonics. The Green’s function, G, is defined by,

F (z, t) =

∫
dz′G(z − z′, t)F (z′, 0), (55)

with some arbitrary function F , implying

G(z, t) = δ(z + At). (56)

We have shown that the phase, group, characteristic and Green’s function speed for
Abbott waves all agree.
The situation seems clear, but isn’t.

No Abbott waves for pure absorption. In a landmark paper, Owocki & Rybicki
(1986) derived the Green’s function for pure absorption line flows subject to the force
(1,1). Taking the Sobolev limit in this Green’s function, upstream propagating
Abbott waves are found.
But this is impossible since, for pure absorption, photons propagate only downstream
and an upstream radiative mode cannot exist. Indeed, the bridging law (Owocki
& Rybicki 1984) which is used in deriving this Green’s function is the sum of a
delta function term, expressing de-shadowing instability, and a Heaviside function,
expressing downstream shadowing of wind ions caused by velocity perturbations.
To derive Abbott’s upstream mode from this downstream-only bridging law is a
contradiction.
The resolution was given by Owocki & Rybicki (1986), who demonstrated that two
limits do not commute in the Green’s function analysis: the Sobolev limit λ → ∞
for long perturbation wavelengths; and the continuum limit

∑
k →

∫
dk in Fourier

transforms of localized functions. Taking the Sobolev limit first, their eqs. (C1, C2)
give the same Green’s function for inward propagating Abbott waves as we derived
above, G(z, t) = δ(z + At). If, instead, the continuum limit is taken first (their
eqs. B10, C3, C4) and only then the Sobolev limit,

G(z, t) =
∞∑
n=0

(At)n

n!

(
d

dz

)n
δ(z). (57)

Formally, this is the Taylor series expansion of a delta function, G(z, t) = δ(z+At).
The paradox is burried and resolved at this point. The latter equation expresses
δ(z+At), which is peaked at z = −At, in terms of derivatives of δ(z), which vanish
exactly at z = −At for t > 0! The series (57) must be taken as it stands. Applying
(57) to an arbitrary initial perturbation F (z′, 0) using (55),

F (z, t) =
∞∑
n=0

(At)n

n!

dnF (z, 0)

dzn
. (58)
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Hence, F (z, t) is constructed from F (z, 0), F ′(z, 0), F ′′(z, 0), F ′′′(z, 0), etc. alone,
from pure initial conditions at the location z under consideration. No paradox
occurs, there are no Abbott waves, only local information is used. The Abbott
speed A is a mere constant, without deeper physical significance.

Including scattering. To the present author, this indicates that a bigger frame
exists which contains the special case of pure absorption, and gives physical mean-
ing to A. This is achieved when scattering is included. Indeed, numerical Green’s
function experiments for SSF and EISF forces show an upstream propagating Ab-
bott front (Owocki & Puls 1999). However, due to mathematical difficulties, the
Green’s function for flows driven by line scattering was not derived analytically so
far. And some authors doubt the physical relevance of Abbott waves and the CAK
critical point at all, suggesting that they are artefacts of the Sobolev approximation
(Lucy 1998). Using an ingenious argument, Lucy (1975) avoided the critical point
singularity (0/0) in a numerical quadrature of the Euler equation. He used differ-
ent numerical representatives for dv/dr in the advection term and in the Sobolev
line force. The argument is that dv/dr in the advection term is a true differential,
whereas dv/dr in the line force means the velocity difference over the finite Sobolev
zone. We adopt here the standpoint: in numerical simulations which apply the
Sobolev, SSF, or EISF approximation, Abbott waves must be accounted for in the
Courant time step and (outer) boundary conditions. Yet, the physical relevance of
Abbott waves remains to be strictly proven by a Green’s function analysis including
scattering.

Courant time step and outer boundary conditions. In simulations published
so far, Abbott waves are not included in the Courant time step, but only sound
waves are. We saw above that Abbott waves define the upstream characteristics
of line driven winds. Therefore, they determine the numerical time step. If not
properly accounted for, Abbott waves cause numerical runaway.
Furthermore, outflow boundary conditions are assumed in the literature on the
outermost mesh point. All flow quantities are extrapolated from the interior mesh
to the boundary. This is wrong for sub-abbottic shallow solutions, for which Abbott
waves enter through the outer boundary. Applying outflow conditions may drive the
solution to the critical one, which is super-abbottic at the outer boundary, hence
consistent with outflow extrapolation [8].
To maintain shallow solutions, on the other hand, an outer boundary condition
must be applied instead of extrapolation. When Abbott waves are included in the
Courant time step and non-reflecting boundary conditions are used, we find that
shallow solutions are numerically stable [9]. Non-reflecting boundary conditions
annihilate any incoming waves (the boundary condition is: ‘no waves’). Even initial
conditions which depart strongly from a shallow wind, e.g., a linear velocity law,
converge to a shallow solution.
We now turn the argument around: once numerical stability of shallow solutions is
achieved, this allows to explicitly introduce flow perturbations on the interior mesh
(away from boundaries) in a controlled way, and to study their evolution, especially
stability. We find that a new runaway mechanism exists, which is caused by Abbott
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waves [8, 10]. In older simulations which applied outflow boundary conditions and
did not account for Abbott waves in the Courant time step, this physical runaway
was totally outgrown by numerical runaway, and therefore not detected.

Negative velocity gradients. The new, physical runaway occurs in regions where
the wind decelerates, v′ < 0. The Sobolev force is ‘blind’ to the sign of v′. All
what counts is the relative Doppler shift between neighboring gas parcels, which
determines the width of the Sobolev resonance zone. The Sobolev line force is
then generalized to gl = 2Γ

√
|v′|/ρ, where α = 1/2 is still assumed. However,

flow deceleration implies a non-monotonic velocity law, and multiple resonances
occur. The incident light is no longer given by the photospheric flux alone, and the
constants K in (25) or 2Γ above become velocity dependent. Rybicki & Hummer
(1978) generalized Sobolev theory to account for non-monotonic velocity laws. While
introducing interesting, non-local aspects to Abbott waves (action at a distance!),
the method of Rybicki & Hummer is not analytically feasible, and we do not consider
it further here. Instead, besides the purely local force gl ∼

√
|v′| we also consider

gl ∼
√

max(v′, 0): all incident light is assumed here to be completly absorbed at
the first resonance. The true line force should lie between these extremes.
For gl ∼

√
|v′|, the Euler equation has characteristic form

(∂t + A∂z)
v′

ρ
= −g

′

ρ
, where A = v ∓ Γ√

±ρv′
(59)

is the Abbott speed in the observers frame. The upper resp. lower sign applies for
v′ > 0 resp. v′ < 0. Therefore, if the flow switches from acceleration to deceleration,
Abbott waves turn from propagating upstream (− characteristic) to propagating
downstream (+ characteristic).
For gl ∼

√
max(v′, 0), the characteristic Euler equation for v′ < 0 is,

(∂t + v∂z)
v′

ρ
= −g

′

ρ
(v′ < 0). (60)

Since the line force vanishes, this is just the ordinary Euler equation at zero sound
speed. The upstream Abbott wave turns here into an upstream sound wave. Note
that a reversal into a downstream (Abbott) wave does not occur. We conclude that
for both types of line force, regions v′ < 0 cannot communicate with the base at
z = 0. Abbott (and sound) waves which originate in these regions propagate only
outward.

§11 Abbott wave runaway

Figure 10, which is taken from [8], shows runaway of a shallow wind velocity law
when a sawtooth-like perturbation of amplitude δv and period T is applied at a fixed
position z = 2 (at one mesh point) at all times. The amplitude δv is sufficiently
large that negative v′ results.
The sequence of events which lead to runaway should be as follows [8, 10]: during
the half-period of negative velocity perturbations, the slope v′ < 0 is to the left (at
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Figure 12: Abbott wave runaway for a shallow wind velocity law (upper panel), and
stable Abbott wave propagation along the critical CAK solution (lower panel). The
critical point lies at x = 1.

smaller z) of the slope v′ > 0. Regions with v′ < 0 propagate outwards, regions
with v′ > 0 inwards. Hence, the two slopes approach and annihilate each other,
leaving an essentially unperturbed velocity law. In some more detail: the sawtooth
perturbation δv is established via many small, roughly constant dv � δv applied
over many time steps dt� T . During the negative half wave −δv, at each time step
dt, −dv is applied, and largely annihilates itself during the subsequent ‘advection’
step of the numerical scheme. The total velocity perturbation after T/2 is not the
perturbation amplitude δv, but roughly 0! Opposed to this, over the half-period
T/2 when δv > 0, the slope v′ < 0 is to the right of the slope v′ > 0. The two slopes
move apart. The gas in between gets rarefied (is ‘stretched’) at roughly constant
speed. (This corresponds to a centered rarefaction wave.) At the next time step,
dv is created atop of this region. Over the half-period T/2, the full perturbation
amplitude δv builds up.
This is shown in the figure: the negative half wave of the sawtooth annihilates
itself, leaving an unperturbed velocity law; the positive half wave is excited at the
intended amplitude, and spreads upstream and downstream throughout the wind.
Asymmetric evolution, or runaway, of the wind velocity towards larger speeds results
over a full period. Note that the runaway is not caused by wave growth, as in a
fluid instability, but by missing negative velocity perturbations to compensate for
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positive perturbations.
The same runaway is also found by introducing a train of sawtooth-like perturbations
in the initial conditions, and let them evolve freely, without introducing further
perturbations at later times. This is shown in Figure 5 of paper [10]. Neighboring
slopes approach and separate in the way described above, which leads to asymmetric
evolution of the wind velocity law towards larger speeds.

§12 Overloaded winds

Generalized critical points. The runaway stops when Abbott waves can no longer
propagate inwards, after a critical point formed in the flow. If the perturbation
source is located above the CAK critical point, the wind undergoes runaway until it
reaches the CAK solution. The perturbation site comes to lie on the super-abbottic
portion of the velocity law. Phases v′ > 0 and v′ < 0 of the perturbation cycle
combine then to a smooth, outward-propagating Abbott wave, as shown in the
figure.
The perturbation source is not required to lie at fixed z. Even when moving outwards
with the local wind speed or faster, it can excite Abbott waves which propagate
inwards in the observers frame, and therefore alter the whole inner flow.
For coherent perturbations below the CAK critical point, runaway does not ter-
minate at the critical solution [8]. The perturbation site is sub-abbottic on the
critical solution, and Abbott waves can further penetrate to the wind base. The
wind evolves towards a velocity law which is steeper than the critical one. The wind
becomes overloaded, m > 1. The runaway continues until a generalized (non-CAK)
critical point, za, forms as a barrier for Abbott waves.
What are these generalized critical points, za? To see this, we set the (stationary)
Abbott speed (39) to zero, Aa = va(1 −

√
gc/mw′a) = 0, giving mw′a = gc. This

shows that the square root in the solution for w′ in (28) vanishes, and a steep and
shallow solution merge. Besides at the CAK critical point, this happens only along
overloaded winds, when a shallow solution bends back towards smaller z on the
steep branch. Below this location, the Euler equation has two real solutions, above
it has two imaginary solutions. Physically, this means that in the proximity of the
CAK critical point, which is the bottleneck of the flow, the line force can no longer
balance gravity, and the wind starts to decelerate. The two real solution branches
reappear at some height above the critical point.

Stationary overloading: kinks. Therefore, at za the wind jumps to the decel-
erating branch, v′ < 0. In Sobolev approximation, the jump is sudden and causes
a kink in the velocity law. Since v′ < 0 on the decelerating branch, Abbott waves
propagate outwards beyond za, hence za is a wave barrier [8].
We have arrived at the somewhat strange conclusion of a stationary solution with
kinks. As mentioned before (page 30 and 45), kinks and other high-order (or weak)
discontinuities of hydrodynamic variables lie on characteristics, i.e., move at char-
acteristic speed. This is true for the present kink, which moves at characteristic
Abbott speed Aa = 0.
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Time-dependent overloading: shocks and shells again. Since zc lies at the
gravity maximum, already small super-CAK mass loss rates cause broad deceleration
regions. In practice, for mass loss rates only a few percent larger than the CAK
value, the deceleration regime is so broad that negative speeds result. Stationary
solutions are then no longer possible, as upwards streaming wind gas collides with
falling gas. For a periodic perturbation source in the wind, numerical simulations
show the occurence of a train of shocks and shells in the wind, which still propagates
outwards. This is shown in Fig. 8 of [10].

Does overloading occur in nature? The discussion so far is idealized since it
assumes coherent perturbation sources in the wind. Perturbations with a finite life
time should still lead to ‘piecewise’ runaway, each perturbation lifting the wind to a
slightly faster, shallow solution. The wind waits on the new, stable shallow solution
until the next perturbation lifts it further.
The outer wind seems to be the natural seat for runaway perturbations, since v′ < 0
is easily excited on the outer, flat velocity law. We speculate that in nature, runaway
perturbations are most prevalent above the CAK critical point and drive the wind
towards the critical, not an overloaded solution [10]. In support of this we add that
not even the strong de-shadowing instability leads to significant wind structure below
the critical point, which could act as runaway perturbation towards an overloaded
solution.
Still, there remains a slight chance that overloading occurs in real winds. Most
notably, Lamers (1998, private communication) reports on a broad region in the
wind of the luminous blue variable P Cygni, which is indicative of flow deceleration;
and therefore, possibly, of overloading.

Instability vs. runaway. We close this chapter with a brief summary of the
‘driving agents’ of wind dynamics in the last two chapters: de-shadowing instability
and Abbott wave runaway. The de-shadowing instability is a true fluid instability
(an amplification cycle) which acts on infinitesimal velocity perturbations. Even
perturbations of short duration will lead to pronounced, non-linear flow structure
which is advected outwards with the wind. In Sobolev approximation, the instability
occurs from second order on (including velocity curvature terms). Abbott wave
runaway, on the other hand, requires finite amplitude perturbations, since v′ < 0 is
required. There is no amplification cycle, but only a kind of perturbation ‘filtering’
as consequence of the asymmetry of the line force with respect to the sign of v′.
Negative velocity perturbations annihilate themselves, and give way to systematic
flow acceleration towards the critical solution. The runaway requires persistent
perturbations. Yet, it occurs already in first order Sobolev approximation.
We should also mention that the present, hydrodynamic runaway is not related to
the plasma runaway caused by frictional decoupling of line driven metal ions and
dragged-along protons (Springmann & Pauldrach 1992). Still, a connection may
exist between these two runaways: Krticka & Kubát (2000) report that frictional
decoupling in thin winds may actually be prevented by the wind jumping to a slow
solution with shallow velocity gradient. Issues of Abbott wave propagation and
multiple solution branches become again interesting in these two-component fluids.
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CHAPTER 4: DISK WINDS

Line driven winds from accretion disks are a relatively new research area, with
quantitative modeling starting in the mid 80ies (Shlosman et al. 1985; Weymann
et al. 1985). Disk winds are fascinating because of the richness of their environ-
ments, including quasars, Seyfert galaxies, cataclysmic variables, and protostars. In
these environments, high-energy particle processes, magnetic fields, coronae, jets,
accretion-dominated advection, compact objects, hot boundary layers, and dust for-
mation play important roles.
Theoretical modeling of line driven disk winds is still in its infancy. In the present
chapter, we treat first a simple, analytic model [6, 7] for line driven winds from
cataclysmic variables. Observational evidence for line driving is almost unequivocal
in these objects. In later sections, we discuss winds from magnetized accretion
disks, mainly aimed at young protostellar objects and cataclysmic variables. Here,
interplay of three driving forces (centrifugal, Lorentz, and line force) leads to an
intricate wind dynamics.

§13 Analytical model

1-d description, flux and gravity. We set up a simplified, 1-D model for station-
ary, line driven winds from thin accretion disks (no self-gravity) in cataclysmic vari-
ables (CVs). These systems consist of a white dwarf and a late-type main-sequence
companion, the latter filling its Roche lobe. We consider first non-magnetic sys-
tems (DQ Her class), where the accretion disk should (almost) reach the compact
object. The clearest indication of line driving comes from the fact that dwarf no-
vae develop P Cygni line profiles during outburst (Krautter et al. 1981; Klare et
al. 1982; Córdova & Mason 1982). Hence, the disk radiation field and wind are
causally connected.
A number of approximations is made. First, we assume that the disk is geometrically
thin, a plane of zero width indeed. We assume that the basic CAK formalism
(Sobolev line force; statistical line distribution function) applies for these objects.
Our central assumption is that each helical wind trajectory lies in a straight (yet,
not vertical) cone. This is sketched in Figure 13.
A realistic approximation for the temperature run with radius q in the disk is T ∼
q−1/2 (Horne & Stiening 1985; Rutten et al. 1993), slightly shallower than the famos
T ∼ q−3/4 of Shakura & Sunyayev (1973). We assume that the disk is optically thick,
and that the radiation field at each radius is that of a black body. The radiative
flux, F, above a disk with T ∼ q−1/2 can be derived in closed form in cylindrical
coordinates [6],

F(r, z) = (Fr, Fz) = πI(r, 0) r2 z

r2 + z2
×(

3r2 − z2 − q2

2r
√
B

− r

z2 + r2
lnC,

3z2 − r2 + q2

2z
√
B

− z

z2 + r2
lnC

)∣∣∣∣rd
q=rwd

, (61)
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Figure 13: Flow geometry in a semi-analytic model of line driven winds from ac-
cretion disks in cataclysmic variables. The helical streamlines are assumed to lie in
straight cones. Only the velocity component vl along the cone is solved for. The
tilt angle, λ, of the cone with the disk is a function of radius, and is derived as an
eigenvalue.

where rwd is the white dwarf radius, rd the outer disk radius, and

B = (r2 + z2 − q2)2 + 4z2q2,

C =
(z2 − r2)q2 + (z2 + r2)2 + (z2 + r2)

√
B

q2
. (62)

The flux isocontours are shown in Figures 3 and 4 of [6]. We adopt again the (‘radial
streaming’) approximation that only velocity gradients along the flow direction are
important. A qualitatively new feature of disk winds is their run of effective gravity
with height, i.e., gravity after subtraction of the centrifugal force. In the disk plane,
effective gravity is zero due to Kepler balance. Effective gravity increases linearly
with height, reaches a maximum, and drops off with r−2 far from the disk. The
exact formula is given in equation (9) of [6].
At first, it was thought that the existence of a gravity maximum makes a standard
CAK critical solution for disk winds impossible, and that ionization gradients have
to be included (Vitello & Shlosman 1988; [7]). The argument was that, because of
zero effective gravity in the disk, a too large mass is launched. Higher up in the
wind, the line force cannot carry the gas over the gravity hill, and the gas falls back
to the disk. From the discussion in the last chapter we see why this argument does
not apply. While the critical point (at finite height) is indeed the bottleneck of the
flow, Abbott waves can adjust the disk (which is the wind base) to the correct,
maximum possible mass loss rate.

Wind tilt angle as an eigenvalue. In the terminology of the Lavalle nozzle, the
effective ‘area function’ along a wind ray is f 2/g, if α = 1/2. Here, f and g are the
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radiative flux and effective gravity, respectively, normalized to their footpoint values
in the disk. The tilt angle, λ, of the straight wind cone (with length coordinate l)
with the disk midplane is found as a second eigenvalue, besides the mass loss rate.
For each disk ring, the 2-D eigenvalue problem is posed as,

dṀ = C max
λ

min
l

f 2

g
. (63)

Here, dṀ is the mass loss rate from the ring, and C is a constant. We search for
the maximum mass loss rate with respect to λ, which can be driven through the
bottleneck. Hence, the minimum must be taken with respect to l. Equation (63)
defines a new saddle point in the lλ plane, besides the standard CAK saddle in the
lw′ plane.
Isocontours of f 2/g above an accretion disk are shown in Figures 6 and 9 of [6].
Opposed to the stellar wind case, the solution topology is rather intricate here,
with multiple saddles and extrema. This is a familiar situation for complicated area
functions, and is also encountered when one allows for energy and momentum input
at finite height in the solar wind (Holzer 1977).
We find that the accretion disk wind undergoes a rather sudden transition, at about
4 white dwarf radii in the disk, from steep tilt angles of only 10 degrees with the
disk normal, to tilt angles of 30 to 40 degrees with the normal. The overall wind
geometry is shown in Fig. 10 of [6]. The wind is strongly bi-conical everywhere,
which is one of the main deductions from kinematic model fits to observed P Cygni
line profiles (Shlosman & Vitello 1993).

Mass loss rates. The mass loss rate from the disk is obtained by integrating over
all rings. For α = 1/2, this can be written as,

Ṁ = c1(g)c2(f) QΓ
L

c2
. (64)

Here, L is the disk luminosity, and L/c2 is the mass loss due to a single, optically
thick line (the photon mass flux!), Q ≈ 2000 is an effective oscillator strength
(Gayley 1995), and Γ is the disk Eddington factor. The correction factors c1 and c2

account for the run of gravity and radiative flux. c1 = c2 = 1 gives the mass loss
rate from a point star. For a thin accretion disk, we find in [6] that c1 = 3

√
3/2.

This is larger than unity since centrifugal forces assist in launching the wind. c2 has
to be calculated numerically, and is also ≥ 1.
We encounter the problem that mass loss rates from the above formula are one to two
orders of magnitude smaller than values derived from P Cygni line fits ([7]; Vitello
& Shlosman 1993; Knigge, Woods, & Drew 1995). Here, the values for Ṁ obtained
from fitting were already revised downwards, for the following reason. In the original
line fit procedure, individual disk rings were assumed to have a blackbody spectrum
(as we did above). The strong Lyman continuum, however, leads then to large
ionization rates, which must be balanced by large recombination rates, or large Ṁ .
If realistic spectra (Long et al. 1991, 1994) with suppressed (or missing) Lyman
continua are used instead, Ṁ can be reduced by roughly one order of magnitude,
while maintaining the ionization parameter.
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Still, there remains the discrepancy noted above, between calculated and observa-
tionally deduced mass loss rates. One possible resolution of this problem is that
distances and luminosities of CVs are systematically underestimated (Drew, Proga,
& Oudmaijer 1999). Furthermore, the all-decisive parameter Q was so far only cal-
culated for dense O star winds. The different spectral shapes of accretion disks, and
ionization effects like the bistability jump (Pauldrach & Puls 1990) may cause larger
Q values in accretion disks than in O stars. The strongest candidate, however, for
resolving the discrepancy is the usual suspect: magnetic fields.

§14 Numerical model

The analytic model discussed so far is one dimensional, assuming straight wind
cones. First time-dependent, numerical 2-D simulations of line driven winds from
accretion disks were performed by Proga, Stone, & Drew (1998). Their wind
rays are surprisingly straight in the polar plane (rz plane), and mass loss rates
agree well with the above values. A new result from numerical simulations is
the occurence of wind streamers. The wind above the disk is structured into al-
ternating dense and rarefied regions. The dense streams propagate radially out-
wards, with a speed relative to the disk which is proportional to the local Kepler
speed. During this motion, the angle between dense streamer and disk becomes
ever shallower. This is shown in Fig. 14. A movie can be found at internet URL
http://www.astro.physik.uni-potsdam.de/∼afeld). The occurence of alternat-
ing dense and rarefied regions is most probably related to mass overloading.

Figure 14: Dense streamers in a line driven wind above a cataclysmic variable disk
(log density, dense regions in black). The white cone around the disk axis is a nearly
gas free region with very fast parcels.
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§15 Magnetized line driven winds

We turn to accretion disks which are threaded by external magnetic fields. This
could be the case in CVs (so-called polars or AM Her systems), young stellar objects
(YSOs), and quasars. Our present simulations aim at the first two classes of objects
only. The results are still preliminary, and much work remains to be done. The
models were calculated using the publically available Zeus 2-D MHD code (Stone
& Norman 1992a,b), augmented by an own, Sobolev line force routine (Feldmeier,
Drew, & Stone, in preparation).

Boundary conditions. The outcome of numerical hydrodynamic simulations de-
pends strongly on the applied boundary conditions. We must, therefore, discuss
boundary conditions in some detail. The reader interested mainly in results on disk
winds may skip over the next few paragraphs, to the section entitled ‘magnetized
wind scenarios’.
For the present discussion, we chose again cylindrical coordinates (in the code, how-
ever, spherical coordinates are used, to avoid staircasing of the stellar surface). On
the polar axis, anti-reflecting boundary conditions are used. Empirically, one finds
that above the ‘dark star’ (both in CVs and YSOs, stellar UV fluxes are negligible),
an essentially gas-free cone forms near the polar axis. The highly rarefied gas in
the cone is accelerated to large speeds (a ‘steep’ CAK solution is adopted), and
the Alfvén speed, vA = B/

√
4πρ, is very large in this cone. Both effects limit the

Courant time step. To avoid effective stopping of the code, we let an artificial, ver-
tical ram pressure jet originate on the star (Krasnopolsky, Li, & Blandford 1999).
Along the stellar surface and the outer mesh boundary circle, inflow resp. outflow
boundary conditions are chosen. Note that outflow boundary conditions are wrong
close to the disk plane, below the Alfvén surface, and exert artificial forces on the
wind (Ustyogova et al. 1999). Future work has to account for this.
Remains the disk itself. The inner disk structure is not resolved in our simula-
tions (actually, zero sound speed is assumed), hence the disk is a simple, planar
boundary. Given are a total of 7 hydrodynamic fields: ρ, vz, vr, vφ, Bz, Br, Bφ, minus
one constraint, div B = 0. Hence, 6 wave modes result: 2 poloidal and 2 toroidal
Alfvén waves, and 2 magnetosonic waves (up- and downstream mode in each case).
Some of these waves are modified by the radiative line force. For simplicity, however,
we keep their above names, with the one exception of the fast magnetosonic mode,
which is termed a magnetoabbottic mode from now on.
By assumption, the disk shall be supersonic, subabbottic, and subalfvénic. Then 1
poloidal, 1 toroidal Alfvén mode and the slow magnetosonic mode enter the mesh
from the disk, and 1 poloidal, 1 toroidal Alfvén mode and the fast magnetoabbottic
mode enter the disk from the mesh. Hence, 3 extrapolations can be applied on
the disk boundary, and 3 boundary conditions must be specified. For the poloidal
components of the gas speed and magnetic field, we follow largely Krasnopolsky et
al. (1999). Here, special care is taken to avoid kinks when magnetic field lines enter
the disk. These kinks would cause artificial currents and forces. We do not follow
Krasnopolsky et al. (1999) in case that gas falls back to the disk. In contrast to
their reasoning, this should only affect the slow magnetosonic mode.
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Remain the toroidal fields vφ and Bφ. With regard to the toroidal Alfvén mode,
one extrapolation and one boundary condition have to be applied. We fix vφ to be
the Kepler speed. This avoids dramatic events of sub-Keplerian gas falling towards
the central object, which are encountered when vφ is left free (Uchida & Shibata
1985; Stone & Norman 1994). Bφ is extrapolated. This causes a problem, since
Lorentz force terms ∼ ∂(rBφ)/∂r occur in the Euler equation for vφ. For Bφ 6= 0,
vφ does generally not agree with the Kepler speed. We proceed by postulating
Bφ ∼ 1/r in the disk (Ouyed & Pudritz 1997a,b). Whereas the latter authors leave
the toroidal disk field constant at all times, we calculate, at each time step, B̄φ as
average of Bφ on the first mesh row above the disk. Within the disk (boundary),
we set Bφ = B̄φR/r, where R is a free parameter.
This introduces an infinite signal speed, since averaging Bφ over the whole disk sur-
face, at each time step, implies instantaneous couplings. Still, the above procedure
works well empirically, and Bφ evolves smoothly in both r and z direction. By
contrast, simulations assuming Bφ = 0 in the disk crash.

Magnetized wind scenarios. As should be clear from this lengthy discussion,
Bφ is of central importance in our simulations. We do not assume a magnetically
dominated, co-rotating, force-free corona a priori. If a strong, line driven flow is
launched from the disk, the angular-momentum conserving gas parcels may instead
drag the magnetic field along, building up a strong toroidal field.
There exist two complementary, magnetocentrifugal wind scenarios. In the model
of Blandford & Payne (1982), rigid poloidal field lines in a co-rotating corona act
as lever arms transferring angular momentum to the gas. There act no Lorentz
forces in the launching region of the wind. In the model of Contopoulos (1995), on
the other hand, vertical gradients of a toroidal field, Bφ, cause non-vanishing curl
(pointing towards the central object), and a Lorentz force rot Bφ×Bφ which points
vertically upwards, see Figure 15. The generation of dominant, large scale toroidal
fields in disk-plus-corona simulations is treated in Miller & Stone (2000) and Elstner
& Rüdiger (2000).

Model 1: a pure Lorentz wind. First, we consider a pure Contopoulos scenario.
The disk has an Eddington factor of 10−2, which is appropriate for CVs and YSOs.
The poloidal field is set to zero. A temporally constant, toroidal field which drops
off as r−1 is chosen in the disk. Note that a pure toroidal field has no Alfvén point.
Physically, it is still meaningful to assume that the flow is superalfvénic, in that an
initially poloidal field got wound-up, above the Alfvén point, into the toroidal field.
Therefore, both Bφ and vφ are now fixed in the disk. The toroidal field strength is
taken from model 2: the present model 1 serves mainly as a simple reference frame
for the more intricate model 2. From the calculation we find that just above the disk,
the vertical Lorentz force is a few times larger than the line force. Hence, the wind
is essentially magnetically launched, i.e., a Contopoulos flow. Still, the mass loss
rate is almost exactly that of a non-magnetic model discussed in the last section.
The explanation is simple: since the flow starts superalfvénic, the CAK critical
point is the only flow bottleneck, and determines the mass loss rate – whatever force
launches the wind.
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Figure 15: Two basic scenarios for magnetized disk winds, launched either by
poloidal (left) or toroidal (right) magnetic fields. To apply the right-hand rule
in the latter case, a constant Bφ,0 should be added to the toroidal field, which leaves
the curl unaltered.

Model 2: magnetic eddies. Next, we chose a purely line driven models from the
foregoing section as initial conditions (regularly spaced, dense streamers alternating
with rarefied regions). A poloidal magnetic field is switched on slowly, assuming
exponential growth. The field is initially axisymmetric, Br = 0. However, the
field lines get tilted in time and get wound-up, creating Bz and Bφ components.
Typically, we find toroidal fields which, at the rim where the accretion disk touches
the stellar surface, are 20 times stronger than the poloidal field. For a not-too big
disk, Bφ is still the dominant field component at the outer disk rim, only dropping
off as r−1. With Bφ dominating, one expects that the mass loss rate is still the one
of model 1. Instead, it is 20 times larger!
The reason is apparently the following. In model 2, the Bφ bulge or wedge above
the disk reaches to significantly larger heights than in model 1. The Lorentz force
can assist then in overcoming the critical point, and the mass loss rate increases.
Why is the Bφ bulge broader in model 2? This model shows a pronounced vortex
sheet in the toroidal magnetic field and gas speed, as is shown in Fig. 11. The eddies
are shed-off from the disk-star rim, and carry the Bφ component to larger heights
above the disk than in model 1. Indeed, the Bφ bulge extends now to the top of the
spinning eddies.

The plasma gun, and other open questions. What is the origin of the vortex
sheet? It is known from plasma physics that toroidal fields are often unsteady and
undergo periodic cycles of field build-up and unloading. This is called a ‘plasma
gun’. We speculate that this is the origin of the present field eddies, too. Future
work has to clarify this issue.
Other issues which shall be addressed in future work are: 1. Will a Contopoulos
wind still form when a Blandford & Payne wind is launched right from model start?
Instead of an initially axisymmetric field, tilt angles > 30 degrees with the disk
normal shall here be assumed for the initial, poloidal field. 2. In present simulations
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Figure 16: Eddies in the poloidal magnetic field above an accretion disk with small
Eddington factor. The unit vector at the top right corresponds to 1 Gauss.

the Alfvén surface ‘dives’ periodically into the disk before it reaches the central
star. This seems to be related to the shedding-off of magnetic eddies. 3. Riemann
boundary conditions shall be applied along vφ, Bφ characteristics, instead of the
above, rather artificial boundary conditions averaging Bφ over the disk.
As was already mentioned, the present models are first steps only. They seem,
however, to keep the basic premise that magnetic fields can lead to increased mass
loss rates in disk winds. These models shall also help to clarify whether magnetic
fields can provide confinement of line driven quasar winds, in order to prevent over-
ionization by central source radiation (deKool & Begelman 1995); and whether
line driving can overcome problems with launching magnetocentrifugal winds from
accretion disks. The latter problems were discussed in an important paper by Ogilvie
& Livio (1998).
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Outlook and Acknowledgments

With the book “Foundations of Radiation Hydrodynamics” by Mihalas & Miha-
las recently being added to the Dover series of classical science texts, there seems
no further need to motivate “radiating fluids” (a term coined by Mihalas & Miha-
las). In astrophysical hydrodynamics, radiation and magnetic fields are of similar
importance.
Radiation hydrodynamics splits into two branches, according to whether the flow
is driven by photon absorption in the continuum or in spectral lines. The former
class includes flows with Thomson scattering on free electrons and ‘dusty winds’.
The latter class includes winds from hot stars and accretion disks, and is subject of
the present writing. A simple, analytic approximation for the line force gl from a
point source of radiation is found by assuming a power law line list and validity of
the Sobolev approximation, giving gl ∼ F

(
ρ−1dv/dr

)α
, with radiative flux F and

0 < α < 1. Thus, gl depends non-linearly on the velocity gradient dv/dr and matter
density ρ, and represents a truly new, hydrodynamic force.
New waves (termed Abbott waves) and a new instability (termed de-shadowing
instability) result from this new force, and are discussed in Chapters 3 and 2, re-
spectively. Abbott waves could be responsible for shaping the velocity law of line
driven winds, by causing a runaway towards the critical flow solution of Castor et
al. (1975). The de-shadowing instability, on the other hand, is responsible for the
formation of strong shocks and dense shells in the wind, and is probably the origin
of observed X-ray emission from O stars; initial doubts after first Chandra X-ray
line observations seem to be overcome. In Chapter 4, we gave a first glance at a
rather new area in line driven wind hydrodynamics: accretion disk winds, and we
discussed the interplay between radiative, Lorentz, and centrifugal forces.
What could be interesting topics for future work? With regard to the de-shadowing
instability, all simulations so far are one-dimensional (with one puzzling exception),
and two-dimensional hydrodynamic models are urgently missing. Line synthesis
calculations using 2-D hydrodynamic models will allow to test our understanding
of X-ray line formation and certain aspects of UV line variability. With regard to
Abbott waves, the controversy whether they are an artefact of Sobolev theory is
at present only partially overcome by post-Sobolev, numerical simulations. A strict
derivation of the Green’s function in presence of line scattering is missing. Finally,
with regard to disk winds, some central questions are the increase in mass loss
rates by combined magnetoradiative driving; magnetic flow confinement to prevent
over-ionization by central source radation; and the amount of external disk viscosity
caused by the wind.
With all these questions still being unanswered, line driven wind hydrodynamics
appears to be a promising field for future research.
And now enough has been said (Aquinas, Sum. Theol., p. II.1, q. 114, a. 10). Almost.
It is my pleasure to thank Janet Drew in London, Wolf-Rainer Hamann in Potsdam,
Rolf-Peter Kudritzki in Hawaii, Colin Norman in Baltimore, Stan Owocki in Newark,
Adi Pauldrach, Joachim Puls, and Christian Reile in Munich, and Isaac Shlosman
in Lexington for many stimulating discussions, at blackboards and in restaurants.
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Abstract. A semi-empirical model is developed for the X-ray

emission from O star winds, and used to analyze recent ROSAT

PSPC spectra. The X-rays are assumed to originate from cool-

ing zones behind shock fronts, where the cooling is primarily

radiative at small radii in the wind, and due to expansion at

large radii. The shocks are dispersed in a cold background wind

whose X-ray opacity is provided by detailed NLTE calculations.

This model is a natural extension of the Hillier et al. (1993)

model of isothermal wind shocks. By assuming spatially con-

stant shock temperatures, these authors achieved good fits to

the data only by postulating two intermixed shock families of

independent temperature and filling factor – i.e., by adjusting

in parallel four parameters. By applying the present model to

the analysis of high S/N PSPC spectra of three O-stars (ζ Pup,

ι Ori, ζ Ori), we achieve fits of almost the same quality with only

two parameters. This supports the idea that the two- or multi-

component X-ray spectra are indeed due to stratified cooling

layers.

Key words: hydrodynamics – radiative transfer – shock waves

– stars: early-type – X-rays: stars

1. Introduction

The X-ray satellite ROSAT, with its high energy resolution and

sensitivity, in particular at soft photon energies, is an ideal tool

to investigate the nature of the X-ray emission of hot, luminous

stars. Hillier et al. (1993) presented a high quality ROSAT PSPC

spectrum of the O4 I(f) star ζ Pup over the energy range from 0.1

to 2.5 keV. They were able to interpret this spectrum by a simple

model in which the X-rays arise from shocks distributed with

a constant filling factor throughout the wind. A large fraction

of the emission from these shocks is absorbed by the ambient

cool wind material, for which the wavelength dependent opacity

is calculated from detailed non-LTE stellar wind models. As it

turns out, this cool wind opacity is crucial for the emergent

Send offprint requests to: A. Feldmeier: feld@usm.uni-muenchen.de
? Based on observations obtained with the ROSAT X-ray satellite.

X-ray spectrum which shows a maximum at 0.85 keV and a

significant drop towards lower energies (cf. Fig. 10).

Hillier et al. achieved a reasonable fit to the observations

with the assumption that all shocks were characterized by a

single temperature of logT [K] ≈ 6.60 (see their Fig. 2). But

the flux deficiency in the calculated spectrum for energies below

0.45 keV indicated that a cooler shock component of logT ≈
6.30 and of roughly equal filling factor as the hotter component

should be present (Fig. 4 of Hillier et al., and Fig. 10 of the

present paper). For the B bright giant ε CMa (B2 II), on the

other hand, Drew et al. (1994) and Cohen et al. (1996) claim

that a one-temperature model is incapable of explaining the

ROSAT spectrum, while good fits can be achieved with a two-

temperature model.

Generally, the wind shocks should have a cooling zone of de-

creasing temperature and increasing density that contributes sig-

nificantly to the X-ray spectrum (cf. Krolik & Raymond 1985).

Therefore, the use of a one- or two-temperature hot plasma emis-

sion coefficient, while valuable for the ad hoc characterization

of shock properties for individual hot stars, is of course ques-

tionable. Consequently, it is important to investigate how the

structure of a cooling zone behind the shock modifies the emis-

sion coefficient and the theoretical emergent X-ray spectrum.

Such an investigation is the purpose of the present paper. We

extend the concept of randomly distributed shocks embedded

in the absorbing cool wind, as used by Hillier et al., and re-

place their mono-temperature integral over the emitting region

to account for cooling gas behind the shock front. We adopt

simple approximations (§2) for the shock structure in the inner

region of a stellar wind, where the cooling time is shorter than

the flow time and the shocks are radiative; and for the outer re-

gions, where the shocks are non-radiative, i.e., they only cool by

adiabatic expansion. In §3, we apply this model to three O stars

with high signal-to-noise ROSAT PSPC spectra to test how the

theoretical X-ray spectrum is modified by the introduction of

structured shocks. A summary of the results is given in §4.

2. Simple post-shock models

Since radiation driven winds are inherently unstable (Lucy &

Solomon 1970; Carlberg 1980; Owocki & Rybicki 1984, 1985;
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Lucy 1984), it is reasonable to attribute the X-ray emission of

hot stars to shocks in their stellar winds. Hillier et al. (1993)

considered non-stratified, isothermal shocks, where the density

and temperature of the hot gas behind the front are constant with

radius. The energy emitted by hot gas from a volume dV into

the full solid angle 4π is

εν(r) = es(r)np(r)ne(r) Λν(ne(r), Ts(r)) dV [erg/s]. (1)

Here,np(r) is the proton density,ne(r) the electron density,Ts(r)

the temperature, and es(r) the volume filling factor of hot gas

behind a shock front located at radius r. The frequency depen-

dent cooling function of a hot plasma, Λν , is calculated using

the most recent version of the Raymond-Smith code (Raymond

& Smith 1977). Hillier et al. neglected the density dependence

in the argument of Λν and adopted Λν = Λν(1010 cm−3, Ts)

throughout the wind, which is a good approximation that we

also used in the following. To avoid any further explicit refer-

ence to the density of the hot post-shock gas, we redefine the

filling factor so that np and ne in (1) (and in subsequent equa-

tions) are the stationary, ‘cool’ wind densities. Notice that we

do not introduce a factor of 16 here as did Hillier et al. (1993)

to account for the density jump at a strong shock. The present

definition is more convenient to compare the filling factors from

different models of the X-ray emission from hot star winds with

differing densities of hot gas.

To account for the temperature and density stratification in

the shock cooling layer, εν is replaced by an integral over this

zone,

ε̂ν(r) = es(r)np(r)ne(r) Λ̂ν(Ts(r)) dV,

Λ̂ν(Ts(r)) = ± 1

Lc

r±Lc
∫

r

f 2(r′) Λν(Ts(r) g(r′)) dr′, (2)

where r is again the location of the shock front, and r′ is the coor-

dinate in the cooling layer of extentLc. The ‘+’ sign corresponds

to a reverse shock, the ‘−’ sign to a forward shock. The functions

f and g describe the normalized density and temperature strati-

fication in the post-shock region, respectively. f = g = 1 returns

the non-stratified, isothermal shocks. With the introduction of

the dimensionless coordinate

ξ = 1 − |r − r′|
Lc

, (3)

Λ̂ν can be written as (using the same symbols f and g again)

Λ̂ν(Ts) =

∫ 1

0

f 2(ξ) Λν(Ts g(ξ)) dξ. (4)

In principle, the functions f (ξ) and g(ξ) have to be calcu-

lated from time-dependent hydrodynamic simulations of radia-

tion driven winds. This is the topic of a forthcoming paper. In

the present paper we take a first step by using simplified ana-

lytical models for the radiative and adiabatic shocks typically

found in such numerical calculations.

2.1. Stationary radiative shocks

The decisive quantity to distinguish between alternative post-

shock models is the cooling time, tc, required by the shocked

matter to return to the ambient wind temperature again,

tc =
Lc

vpo

∫ 1

0

dξ

h(ξ)
. (5)

Here,h = |v−vs|/vpo, where v and vs are the wind speed and the

shock speed, respectively, in the stellar frame; vpo is the abso-

lute value of the speed of post-shock gas (i.e., gas immediately

behind the front) relative to the front. Therefore, vpoh(ξ) is the

speed of gas in the cooling zone relative to the shock front. If tc

is small compared with the dynamical flow time tf ,

tf =
r

v(r)
, (6)

the shock can be regarded as stationary.

Because of the very high temperature in the post-shock

region, the radiative acceleration of matter can be neglected.

The same is true for gravitational acceleration, since for strong

shocks the gravity scale height is large compared with the cool-

ing length Lc. In such a case then, the post-shock structure is

given by the stationary, 1-D plane-parallel gasdynamic equa-

tions, which include radiative cooling in the energy equation.

This problem has been discussed by Chevalier & Imamura

(1982; CI in the following) for special cases, where the fre-

quency integrated cooling function follows a power law in tem-

perature,

Λ(T ) =

∫ ∞

0

Λν(T ) dν = AR Tα. (7)

In the following we

shall use AR = 1.64 × 10−19 erg cm3 s−1 K1/2 and α = −1/2

as a reasonable approximation to the cooling function of a hot

plasma for temperatures in the range 104.8 ≤ T ≤ 107.3 K (Cox

& Tucker 1969; Raymond et al. 1976). Extending the analysis

of CI to the cooling exponent α = −1/2, we obtain the solution

f (ξ) =
1

h(ξ)
,

g(ξ) = 1
3
h(ξ)(4 − h(ξ)),

ξ(h) =
1

93
√

3 − 40π

{

−120 arccos
(

1 − 1
2
h
)

+
√

4h− h2
(

60 + 10h + 2h2 + 29h3 − 8h4
)

}

, (8)

where 0 ≤ h ≤ 1. The total cooling time and cooling length are

tc =
40

7

C

AR

v3
po

ρpo

,

Lc =
93
√

3 − 40π

10

C

AR

v4
po

ρpo

, (9)
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Fig. 1. Post-shock structure for a steady radiative shock after Eq. (8).

The density function f and temperature function g defined in (2) are

shown. Dashed line: approximation for f and g after (11).

where for a hydrogen/helium gas the constant C is given by

(with mp the proton mass, k the Boltzmann constant)

C =
m

5/2
p

k1/2

(1 + 4Y )5/2

(1 + IY )(2 + [1 + I]Y )1/2
. (10)

The helium fraction by number is Y = nHe/nH, and I is the

number of free electrons provided per helium nucleus; hydrogen

is assumed to be fully ionized. Fig. 1 shows the density function

f and the temperature function g.

To the best of our knowledge, the function ξ(h) in (8) cannot

be inverted analytically to give h(ξ). From a Taylor expansion

at h = 0 and the requirement that h(1) = 1 at the beginning of

the cooling zone, we find

h(ξ) = a ξ2/7
[

1 +
(1

a
− 1

)

ξ2/7
]

, (11)

where a =
[

7
10

(

93
√

3
40

− π
)]2/7 ≈ 0.87225. This is accurate to

better than 1.4% over the whole cooling zone, see Fig. 1, and is

therefore used in the following.

With (8) and (11), the post-shock structure is well defined

and the cooling function of the stratified shock can be calculated

according to (4). The result is shown in Fig. 2 for logTs = 6.6
(for gas of solar composition). The stratified shock emits signif-

icantly more radiation at soft energies, and less above 1.3 keV

than an isothermal shock. This can be understood from Fig. 3.

In the temperature-energy plane the Raymond-Smith function

Λν(Ts) has a maximum at (logT = 6.25;E = 0.5 keV). Ac-

cording to (4), all layers with T ≤ Ts contribute with increas-

ing weight factor f 2 to the cooling function Λ̂ν(Ts) for struc-

tured shocks. For logTs = 6.6 and E ≤ 0.5 keV, Λν(Ts g)

passes the maximum and, thus, Λ̂ν(Ts) becomes larger than

Λν(Ts). For logTs = 6.6 and E > 1 keV, Λν(Ts) decreases

Fig. 2. Cooling function versus energy for logT = 6.6. Solid: strati-

fied radiative shock emission Λ̂ν (T ); dashed: Raymond-Smith function

Λν (T ).

so rapidly that the weighting factor f 2 is not able to compensate

and Λ̂ν(Ts) < Λν(Ts) results. Fig. 4 shows the ratio Λ̂ν/Λν in

the temperature-energy plane.

To calculate the X-ray emission from an ensemble of embed-

ded wind shocks, we need to know the shock temperatureTs and

the filling factor es as functions of radius. Notice that while the

density and temperature stratification, f and g, within the cool-

ing zone are ‘microscopic’ functions, i.e., they depend on short-

scale radiative cooling only, Ts and es are ‘macroscopic’ quan-

tities which depend on the actual wind dynamics. One might try

however to derive some ad hoc conclusions about them. Con-

cerning the filling factor, a simple argument may proceed as

follows: assume for the moment that the shock temperature is

independent of radius in regions where the wind has reached a

substantial fraction of its terminal velocity. From (9), the cooling

length then grows as Lc ∝ 1/ρ ∝ r2. If we assume furthermore

that no shocks are created beyond a certain location in the wind,

and that the shocks are also not destroyed on their further prop-

agation, the filling factor grows as es ∝ r2.

However, time-dependent hydrodynamic simulations

(Owocki et al. 1988; Owocki 1992; Feldmeier 1995) of initially

small perturbations which grow in an unstable wind confirm

these conclusions only partially1: here, the shock temperatures

and shock spacing result from complex wind dynamics, which

1 In these simulations, the smooth, stationary wind is usually trans-

formed into a sequence of narrow, dense shells, which are separated

by almost void regions. On their starward side, the shells are bound

by a strong reverse shock, which decelerates a fast, inner wind stream.

On their outer side, they are bound by a weak forward shock which

overtakes the slower gas ahead of it (at larger radii), and compresses it

into the shell.
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Fig. 3. Isocontours of log Λν in the log T–energy plane.

Fig. 4. Isocontours of log (Λ̂ν/Λν ) in the log T–energy plane.

lead to frequent mergers of shocks. Notice that the latter falsify

the above assertion that shocks should keep their identity. The

results from these calculations are broadly consistent with con-

stant or slowly decreasing temperatures and filling factors of

hot gas as a function of radius. However, the details of the wind

dynamics are still largely unknown, (i) due to approximations in

the treatment of the radiative transfer, the small-scale structure

in the wind, and thermal instabilities (see below); and (ii) since

neither the location (photosphere vs. wind), the nature (pulsa-

tions, waves, noise, etc.), nor the temporal coherence (periodic

vs. stochastic) of the seeding perturbations are known at present

from variability observations of hot stars (cf. the volume edited

by Moffat et al. 1994). Thus, for simplicity, we shall suppose in

the following constant Ts and es throughout the wind.

Two further important restrictions have to be made. The first

one concerns the thermal instability of radiative shocks. Langer

et al. (1981, 1982) and CI have pointed out that for temperature

exponents α <∼ 1 in the cooling function power law (7), a global

thermal instability exists that leads to a periodic contraction and

expansion of the cooling zone, i.e., to an oscillation in the posi-

tion of the shock. The typical timescale of this oscillation is of

the order of a few cooling times. Since the density and temper-

ature stratification of the post-shock region change during the

course of this contraction and expansion, and since these quan-

tities enter non-linearly into the shock emission coefficient, the

thermal instability will certainly affect the emitted spectrum.

In the model presented here, we have simply neglected these

effects to keep them analytically tractable.

The second restriction is given by the assumption that the

cooling time tc is small compared with the dynamical flow time

tf . We expect that far out in the wind at low densities, tc will

become larger than tf and the assumption will fail. Using the sta-

tionary wind velocity law (where r̂ ≡ r/R∗, v∞ is the terminal

velocity, and with assumed value of β = 1),

v(r) = v∞
(

1 − b

r̂

)

, b = 0.99, (12)

and the equation of continuity together with (6) and (9), we

obtain for the ratio of cooling to flow time (where Ṁ is the

mass loss rate; and T6 is the temperature in units of 106 K),

tc

tf

= 5.37 × 10−4
( v∞

103 km/s

)2( Ṁ

10−6 M�/yr

)−1 R∗
10R�

×

(1 + 4Y )(2 + [1 + I]Y )

1 + IY
T

3/2

s,6 r̂
(

1 − b

r̂

)2

, (13)

and for the ratio of the cooling length to the position of a shock,

rs,

Lc

rs

= 1.75 × 10−5 v∞
103 km/s

( Ṁ

10−6 M�/yr

)−1 R∗
10R�

×

(1 + 4Y )1/2(2 + [1 + I]Y )3/2

1 + IY
T 2

s,6

(

r̂ − b
)

. (14)

For the O star ζ Pup, e.g., we find from Table 1 (using I = 1,

cf. Sect. 3),

tc

tf

= 2.59 × 10−3 T
3/2

s,6 r̂
(

1 − b

r̂

)2

,

Lc

rs

= 4.62 × 10−5 T 2
s,6

(

r̂ − b
)

. (15)

For Ts = 5 × 106 K, e.g., we obtain for ζ Pup r0 = 36R∗ for

the radius at which tc/tf is unity. At this radius, Lc/rs = 0.04

is still small.
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However, as discussed before, the actual wind dynamics

may be far from stationary, and due to the progressive accu-

mulation of the wind gas into dense shells, these values for r0

may be (much) too large. This is discussed further in the next

section.

For X-ray photons which stem from radii larger than r0,

the approximations made in this section will be invalid. Con-

sequently, we next study an alternative approximation that will

hold for locations beyond r0.

2.2. Constant velocity adiabatic shocks

Far out in the wind, where r � r0, the radiative cooling of

the shocks can be neglected. We thus expect spherical segments

of shocks that started at much smaller radii will expand un-

dergoing adiabatic cooling only. In addition, the unperturbed

wind has achieved its terminal velocity and radiative acceler-

ation is small. Simon & Axford (1966; SA in the following)

have treated such a problem for a pair of reverse-forward shock

waves which propagate at constant velocity through the outer

solar wind and/or interplanetary medium. As mentioned before,

such pairs of shocks which enclose a shell of dense material are

also expected from time-dependent hydrodynamic simulations

of hot star winds.

SA solve the spherical problem of a driven shell (see below

for the precise meaning) in terms of the similarity variable

η =
r

vf t
, (16)

where vf is the velocity of the forward shock front, which is

therefore located at ηf = 1. (At t = 0, the whole shell is at

r = 0.)

This similarity variable is appropriate only for the case that

all flow features (shocks and contact discontinuities) move at

constant speeds. As discussed by SA, this corresponds to a tem-

porally constant mass loss rate of the source after the shell re-

lease, where the latter is caused by a sudden jump of the density

and velocity (and therefore, usually, of the mass loss rate; cf. Ap-

pendix A). The general case of a similarity variable η = r/Atδ

corresponds to a time dependence vf ∝ tδ−1 of the speed of all

flow features, and a change in mass loss rate Ṁ ∝ tδ−1 of the

source after throwing off the shell. This temporal behaviour of

source conditions is meant to mimic a solar flare and the subse-

quent return to the quiescent wind. – However, for the radiation

driven winds of hot stars it is at present not clear how the non-

similarity dynamics at small radii serves as an inner boundary

condition for the similarity solution (possibly) achieved at large

distances. As discussed in the foregoing section, this is both

due to the unknown nature of the wind perturbations, and to the

intricate shock dynamics with frequent merging, etc. (in Ap-

pendix B we shall demonstrate for a simple example how shock

collisions can influence the propagation characteristics of the

shocks, i.e., the parameter δ). In particular, it seems possible

that the outer, adiabatic flow belongs to the class of similarity

problems for which, according to Zel’dovich & Raizer (1967,

Chap. XII, p. 794), the “self-similar motion originates as a re-

sult of some non-selfsimilar flow that approaches a self-similar

regime asymptotically”, and where the similarity exponent δ
cannot be determined in advance by dimensional considera-

tions or from the conservation laws, but has to be found from

the actual solution of the problem. In light of these uncertainties,

our assumption of constant shock speeds and therefore constant

shock temperatures in the outer similarity regime appears to be

a reasonable ‘minimum hypothesis’.

One may then try to derive the radial dependence of the

filling factor es of the completely macroscopic (Ts, es and f ,

g) adiabatic shocks: since all shells move at the same speed,

and since the forward shocks propagate faster than the reverse

shocks, every forward shock should eventually overtake the re-

verse shock of the neighboring shell ahead of it. As long as all

shock speeds remain constant, and the distance between suc-

cessive shells is small compared with the radii the shells are

located at, es ∝ r. However, as shown in Appendix B, this does

not imply the existence of an outer, hot corona. Instead, the fill-

ing factor of hot gas always remains < 1 (or even � 1), while

it is the fraction of gas which passed through a shock transition

which approaches unity.

Furthermore, time-dependent wind simulations of unstable

growth show that many (if not most) radiative reverse shocks, in-

stead of being progressively transformed into adiabatic reverse

shocks at large radii r0 � 10R∗, are suddenly destroyed at in-

termediate radii <∼ 10R∗, and leave behind hot, adiabatic cool-

ing gas which was heated in the front at previous times (Feld-

meier 1995). – Due to these two processes of shock merging

and shock destruction, a monotonically decreasing or roughly

constant filling factor is more appropriate than the increasing

filling factor asserted above. In the following, a constant es will

be supposed.

Finally, in the comparison with observations it is important

to realize that exposure times of ROSAT are of the order of some

1000 seconds, whereas for r >∼ 100R∗ the flow time is some

105 seconds. Therefore, every exposure reflects the momentary

position and stratification of shocks in the outer wind. As a

consequence, the post-shock solutions ρ(η) and T (η) obtained

by SA describe purely spatial structures in our case, since the

time t in the definition of η can be regarded as constant for every

exposure.

In terms of the similarity variable from (16), the hydrody-

namic quantities are written as

v(r, t) =
rV (η)

t
, ρ(r, t) =

ρ0σ(η)

r2
, p(r, t) =

ρ0π(η)

t2
. (17)

Note that the velocity of every flow feature f , i.e., shocks

and contact discontinuities, is then Vf ≡ 1, since vf = rf Vf/t
and also vf = rf/t.

The positions of the reverse shock, ηr, and the contact dis-

continuity inside the shell, ηc, are found from numerical inte-

gration of the ordinary differential equation (10) of SA. The

two integration constants which determine a special solution

are chosen to be
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Fig. 5. Dependence of the position ηc of the contact discontinuity on

the inflow parameter κf = vf,pr/vf .

κf = vf,pr/vf ,

Θ = Tr,po/Tf,po. (18)

Here and in the following, indices ‘r’ and ‘f’ refer to the reverse

and forward shock, respectively. SA fixed κf = 1 for the solar

wind by neglecting the ambient wind speed as compared with

the forward shock speed. In general, for a non-negligible speed

v∞ ahead of the forward shock, one finds (with µ the mean

atomic weight)

κf =

(

1 +
3

4

v∞
vf,ju

)−1

=

(

1 +

√

3µmp

16k

v∞
√

Tf,po

)−1

, (19)

where vju is the velocity jump across the shock, and in the first

equality vpr = 4
3
vju and vf = vhi + 1

3
vju (with vhi the velocity

immediately behind the shock front) have been used for a strong

shock in a gas with γ = 5/3. For typical O star wind speeds, and

temperatures of the forward shock up to 107 K, 0 ≤ κf ≤ 0.3.

The position of the contact discontinuity and of the reverse

shock are then functions of κf and Θ,

ηc = ηc(κf ),

ηr = ηr(κf ,Θ). (20)

The (numerically derived) function ηc(κf ) is shown in Fig. 5. A

good fit to this is

ηc = 1 − 0.1314κf − 0.02857κf
2. (21)

The function ηr(κf ,Θ) is determined by Fig. 6. For different

values of κf , Fig. 6 shows the dependence of the ratio of the

cooling lengths of the reverse and forward shock, (ηc−ηr)/(1−
ηc), on Θ. In the range 0 ≤ κf ≤ 0.3, this can be approximated

by

ηc − ηr

1 − ηc

= (1 − κf + κf
2) Θ

1
2
−0.31κf +0.55κf

2

. (22)

From Fig. 6 (and also from the foregoing equation),

lim
κf→0

ηc − ηr

1 − ηc

=
√

Θ, (23)

or, stated differently: for every adiabatic shock with small cool-

ing length (i.e., with sufficiently low post-shock temperature)

the cooling length scales as the square root of the post-shock

temperature,

lim
Lc/r→0

Lc ∝
√

Tpo. (24)

This can be understood as follows. The adiabatic energy equa-

tion for a fluid particle is (with d/dt the Lagrangian derivative)

dT/dt = −(γ− 1)T div v. Therefore, the cooling length scales

as Lc ≈ −T (dT/dt)−1 vpo ∝ (div v)−1 vpo. Assuming pressure

constancy in the cooling zone (see below) one finds from the

Euler equation that the velocity gradient is v′ ≈ 0. Assuming

spherical symmetry, it follows that Lc ∝ r
2v vpo. For all shocks

with a velocity jump which is small compared with the station-

ary wind flow speed one can identify v ≈ vstat. Furthermore,

since for such weak shocks the cooling zone is short compared

with dynamical length scales, Lc � r, the radius r in the fore-

going expression forLc is a well-defined, single location. Using

finally vpo ∝
√

Tpo, the above assertion Lc ∝
√

Tpo follows.

Within the cooling layers behind the forward and reverse

shocks, the spatial post-shock coordinate ξ introduced in (3)

can be related to η by

η = ηc + ξ(1 − ηc) forward shock,

η = ηc − ξ(ηc − ηr) reverse shock, (25)

where 0 ≤ ξ ≤ 1.

SA give a power-law expansion (their Eq. 11) for the density

and temperature in the neighborhood of the contact discontinu-

ity, that leads to the following functions f and g in (2) (the first

position in the braces corresponds to the forward shock, the

second to the reverse shock),

f (η) = {1,Θ−1}
(

η{f,r}
η

)2

h(η)−4/9,

g(η) =
1

f (η)
,

h(η) =
(ηc/η)3 − 1

(ηc/η{f,r})3 − 1
. (26)

Again we defined ff = gf = 1 immediately behind the forward

shock (notice that σ(η) ≡ 4η2f (η), since SA use the conven-

tion σf,pr = 1). In taking g = 1/f , we assume the pressure to
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Fig. 6. Dependence of the ratio of the cooling lengths of the reverse

and forward shock, (ηc − ηr)/(1 − ηc), on the shock temperature ratio

Θ, for different values of the inflow parameter κf .

Fig. 7. Full line: exact numerical solution for the SA shell

(κf = 0.1; Θ = 10). Dashed line: approximate analytical solution (26).

be constant through both cooling zones, πpo = 3
4
κf

2, which is

actually a very good approximation (cf. SA). This pressure con-

stancy also allowed us to fix the density at the reverse shock. As

can be seen from Fig. 7, the expansion (26) also describes the

overall run, found by numerical integration, of f and g within

the cooling zones very well, and is therefore used to calculate

the emission coefficient (2) analytically.

Comparing Figs. 1 and 7, one sees that the cooling in the

adiabatic shock proceeds more uniformly (i.e., the change in

slope over the cooling zone is smaller) than in the radiative

Fig. 8. Cooling function versus energy for logT = 6.6 of an adiabatic

shock with Θ = 1 (full line) and of a radiative shock (dashed line).

shock. The reason is that the gas in the radiative shock undergoes

runaway cooling (Field 1965), i.e., it cools the better the colder

and therefore denser it already is. This is also reflected in Fig. 8

where the cooling functions of an adiabatic shock (Θ = 1 is

used here) and a radiative shock of temperature logT = 6.6 are

shown. The adiabatic shock has more emission at low energies,

and less emission at high energies than the radiative shock; i.e.,

the adiabatic shock has the softer spectrum.

3. Spectral fits for three selected O stars

We assume that the shock temperature, Ts, and the volume fill-

ing factor, es, have one single, unique value (i) for radiative and

adiabatic shocks, and (ii) for reverse and forward shocks. Ts

and es are then the only two parameters to fit the X-ray spec-

trum. These restrictions are again meant to make our model

directly comparable to the Hillier et al. model, with the one

central difference that we use structured cooling zones behind

shocks instead of isothermal shocks. We solve the X-ray trans-

fer via a formal integral, where the wind flow is assumed to be

spherically symmetric. The X-ray emission is given by (2). (As

in Hillier et al., we assume that no X-rays are emitted from be-

low Rmin = 1.5 R∗.) The bound-free and line opacities for the

cold background wind are taken from full NLTE models, and

the K-shell opacity is treated for the elements C, N, O, Ne, Mg,

Si, S (Daltabuit & Cox 1972).

In the following we present results for the three O stars from

Table 1. (The analysis of the full sample of 42 O stars observed

with the ROSAT PSPC is topic of a forthcoming publication;

preliminary results are given in Kudritzki et al. 1996). They

should be ideal candidates to test our X-ray model since they

have among the highest signal-to-noise ratio within our full sam-
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Table 1. Parameters of the analyzed O stars.

star classif. Teff

10
3

K
log g R∗

R�
Y v∞

km/s
Ṁ

10
−6 M�/yr

log

(

NH

cm
−2

)

ζ Pup O4 I(f) 42 3.6 19 0.12 2250 5.9 20.00

ι Ori O9 III 34 3.5 18 0.18 2350 0.8 20.30

ζ Ori O9.7 Ib 32 3.2 24 0.10 1850 2.4 20.48

Fig. 9. Location of optical depth unity for X-rays in the ROSAT energy

band for the three stars from Table 1: ζ Pup (full); ι Ori (dotted); ζ Ori

(dashed).

ple. Furthermore, their stellar and wind parameters are known

to a good accuracy: for ζ Pup, the photospheric parameters are

taken from Kudritzki et al. (1983) with the log g correction for

‘unified’ effects and centrifugal forces from Puls et al. (1996).

For ι Ori, photospheric parameters are from Lamers & Leitherer

(1993) and references therein; and for ζ Ori from Voels et al.

(1989). The terminal velocities for all three stars are from Haser

(1995). The mass loss rates are from Puls et al. (1996), where

for ι Ori and ζ Ori the measurements of Lamers & Leitherer

have been reanalyzed. Additionally, the mass loss rate of ζ Ori

has been recalibrated to the photospheric parameters from Voels

et al. and the terminal velocity from Haser, following the pro-

cedure described in Puls et al. Metal abundances (which enter

through the opacities) are derived for ζ Pup from an analysis

of UV spectra (Pauldrach et al. 1994; Haser 1995). For ι Ori

we assume CNO processed material, and for ζ Ori we presently

assume solar abundances. Finally, the interstellar hydrogen col-

umn densities,NH, are from Shull & van Steenberg (1985) using

interstellar Ly-α. This is certainly advantageous over deriving

NH from the X-ray fits themselves.

We notice that ζ Ori showed an episodic change in its X-ray

emission during a period of 2 days from Sep 23 to 25 in 1992,

when the count rate in the energy band from 0.6 to 2.4 keV

increased by ≈ 30% (Berghöfer & Schmitt 1994). The latter

authors proposed a single, strong reverse shock as the cause.

This event is not included in our data set which reaches only

to Sep 19, 1992. For ζ Pup, on the other hand, Berghöfer et al.

(1996) found a modulation of period 16.7 hours and amplitude
<∼ 10% of the count rate in the energy band from 0.9 to 2.0 keV.

This was traced back to periodic density variations at the wind

base. Since our data set for ζ Pup covers ≈ 16 cycles of this

modulation, the data should define a proper average emission.

– In total, we conclude that our present stationary model for

the X-ray emission should be adequate to analyze the ROSAT

observations of the above three program stars.

For the comparison of our model fits with the ROSAT obser-

vations we have also to consider sources of uncertainties of the

data themselves, especially due to the calibration of the PSPC.

As advised by the ROSAT User’s Handbook (Oct 1994, draft

version) we excluded energies above 2.2 keV when fitting the

observed spectrum due to insufficient calibration of the effective

area and energy response above 2 keV. The Handbook also rec-

ommends not using energies below 0.11 keV (detector channel

11) for observations taken after October 11th 1991. Half of the

integration time for ζ Ori, and all the integration time for ζ Pup

and ι Ori occurred after this date. Therefore we excluded the

first data point in the observed spectrum. Finally, uncertainties

in the calibration of the PSPC detector response can account for

≈ 20% of the deviations between model and observation at the

prominent dip in the observed spectra near 0.4 keV. We there-

fore also ignored the 2 to 4 data points in the range from 0.38

keV to 0.48 keV in the fitting procedure.

Fig. 9 shows the location of optical depth unity (with optical

depth zero at the observer) in the winds of the three stars from

Table 1, for X-ray energies in the ROSAT band. From this figure

it is clear that soft X-rays can escape the dense wind of ζ Pup

only from large radii. Physically, this is due to the fact that

helium starts to recombine to He+ from≈ 6R∗, which increases

the opacity enormously (cf. Hillier et al. 1993). In contrast,

helium stays fully ionized in the winds of ι Ori and ζ Ori up

to very large radii. Accordingly, the ROSAT spectrum of ζ Pup

(cf. Fig. 10) is harder than that of ι Ori (Fig. 11). The spectrum

of ζ Ori in Fig. 12 lies intermediate between the former two.

This is mostly due to the larger NH in direction of this star than

of ι Ori.

Also shown in Figs. 10, 11, and 12 are our best fits to the

ROSAT spectra of ζ Pup, ι Ori, and ζ Ori respectively, together

with the fits from the Hillier et al. isothermal shock model as-

suming one or two hot components. Table 2 gives the post-shock
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Fig. 10. ROSAT PSPC spectrum of ζ Pup (error bars) together with our best fit (full line) assuming inner radiative and outer adiabatic shocks.

For comparison, the best fits from a one-component (dotted line) and two-component (dashed line) isothermal shock model after Hillier et al.

(1993) are also shown.

Fig. 11. Spectrum and fits of ι Ori. Labeling of the curves as in Fig. 10.

temperatures and the volume filling factors derived for the three

stars. The following conclusions can be drawn from this.

(1) Temperatures: The post-shock temperatures of the

present model with resolved cooling zones are, for all three stars,

≈ 30% higher than the temperatures of the hotter shock family

of the two-component model after Hillier et al.; they are 60%

to 80% higher than the temperatures from their one-component

model. The need for higher temperatures in the present approach

is clear from the fact that the Hillier et al. temperatures corre-

spond to averages over the cooling zones.

(2) Filling factors: (a) The sum of the two individual fill-

ing factors from the two-component model after Hillier et al.

is about equal to the filling factor from their one-component

model. (b) The latter is about 2.7 times the filling factor from our
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Fig. 12. Spectrum and fits of ζ Ori, cf. Fig. 10.

Table 2. Derived post-shock temperatures and volume filling factors

for the O stars from Table 1; both for the present wind model which

assumes radiative and adiabatic shock cooling zones, and for the one-

and two-component isothermal shock models after Hillier et al. (1993).

cooling zones isothermal

2-comp. 1-comp.

ζ Pup logTs = 6.75 6.64 / 6.20 6.54

es [10−3] = 4.3 6.8 / 4.4 11

ι Ori 6.68 6.58 / 6.14 6.43

35 53 / 31 96

ζ Ori 6.68 6.57 / 6.27 6.46

5.0 7.9 / 4.3 14

model with resolved cooling zones. – The reason for (a) is that

the Raymond-Smith function at energies 0.1 <∼ E [keV] <∼ 0.5
and temperatures 6.3 <∼ logT <∼ 6.7 can be very roughly ap-

proximated (cf. Fig. 3) by Λν(T ) ≈ AνT
α, with α >∼ −1/2.

This implies a comparable contribution from both the hotter and

colder component to the soft X-ray flux, i.e., the total filling fac-

tor is the sum of the individual filling factors. – The main reason

for (b) is the density stratification of the cooling zone: for sim-

plicity we consider only radiative shocks, and use h(ξ) = ξ2/7

as an approximation to (11). We suppose that the frequency

integrated emission from a radiative shock and an isothermal

shock should be equal. For the cooling function from (7), with

exponent α = −1/2, Eqs. (1) and (2) give then

(e/
√
T )iso = 7

√
3 (2 −

√
3) (e/

√
T )rad ≈ 3.2 (e/

√
T )rad. (27)

Since the temperatures are fixed from the spectral fits, where

typically Trad ≈ 1.7Tiso results (cf. item 1), we are left with

eiso ≈ 2.5 erad, in good agreement with the above figure of 2.7.

(3) Fit quality: Our fits with 2 adjustable parameters are

better than (or, in the case of ζ Ori, equally as good as) the

one-component fits of Hillier et al. (also 2 parameters), and are

almost as good as their two-component fits (4 parameters). This

is one of the main results of the present paper. – Actually, we

find that the two-component Hillier et al. model has too many

free parameters, in that the temperature of the hotter component

is often left unconstrained by the fit procedure by orders of mag-

nitude. The fits are then to be considered somewhat fortuitous.

Furthermore, we note that the one-component fit for ζ Ori is

already very good, and only minor achievements can be won

from the other two models. ζ Ori seems to be exceptional in

this respect since no other star in our full sample can be fitted

equally well with a one-temperature model.

As was discussed in the foregoing sections, time-dependent

hydrodynamic simulations of hot star winds indicate (i) that re-

verse shocks are generally stronger than forward shocks; and

(ii) that the reverse shocks are abruptly destroyed at relatively

small radii, instead of being gradually transformed into adiabatic

shocks at large radii. We simulate this shock destruction by ap-

plying r0 = 8R∗ (cf. Section 2.2) in our fit procedure, since in a

first, crude approximation the leftover, adiabatic cooling gas can

again be viewed as an SA cooling layer. This gives almost iden-

tical results to the ones in Table 2: the derived temperatures and

filling factors differ by ≈ 10% only, and the fit quality is about

equal. To test the importance of item (i), we assume Θ = 10 for

adiabatic shells, instead of Θ = 1 above. Using a large r0 from

stationary wind densities (cf. Eq. 13), the fit quality is again

comparable to the one from Figs. 10 to 12 (however, usually not
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as good), and the derived temperatures and filling factors differ

by ≈ 30%. Finally, applying both r0 = 8R∗ and Θ = 10 at

once results in definitely poorer fits, and the derived parameters

differ by ≈ 40% from the ones in Table 2. – However, we do not

consider either Θ or r0 to be adequate fit parameters; instead

they should be fixed to plausible values. Valuable information in

this respect may – hopefully – be gained from time-dependent

hydrodynamic wind simulations.

The question remains as for the influence of the interstel-

lar column density on our results. Varying logNH within the

estimated error bounds of Shull & van Steenberg, ∆ logNH =

(ζ Pup: ±0.05; ι Ori: ±0.15; ζ Ori: ±0.1), alters the temper-

atures by ∆ logTs = (∓0.01; ∓0.08; ∓0.06), and the filling

factors by ∆es = (±0.2;±10;±1) × 10−3 for the model with

cooling zones. Recently, Haser (1995) derived a column den-

sity to ζ Ori of logNH [cm−2] = 20.34, which is slightly off

the error interval of Shull & van Steenberg (1985). This low NH

results in a somewhat poorer fit: because the free-free opacity

drops ≈ E−3, the hard part of the spectrum is practically left

unaltered – and so should be the fit parameters. On the other

hand, the soft X-ray flux is enhanced by lowering the column

density, and deviates from the ROSAT data then. Assuming that

the true NH to ζ Ori lies at the lower edge of values allowed by

Shull & van Steenberg (1985), our shock temperature for ζ Ori

from Table 2 would be 15% too low, and the filling factor 25%

too high.

Finally we add some comments about the fit quality near the

dip at 0.4 keV. As mentioned above, we ignored the data points in

this neighborhood due to calibration uncertainties in the detector

response. If, on the other hand, these data points are included, the

largest deviations between model and observation are found if

helium is fully ionized throughout the wind. The reason is that

in the latter case the K-shell opacity is the dominant opacity

source at energies around 0.4 keV. Preliminary test calculations

indicate that especially a change in carbon abundance can have

a large effect on the dip due to its proximity to the C IV K-shell

edge at 0.347 keV. But even the nitrogen and oxygen K-shell

edges which are located at somewhat higher energies can affect

the dip. The reason is that monochromatic photons are spread

out over several detector channels. Future work will have to

show to what degree this can remove deviations between model

and observation at energies near 0.4 keV.

We close this section with a comparison of our method and

results with those of Cohen et al. (1996). These authors used both

ROSAT and EUVE data to constrain high-temperature emis-

sion models for the B giant ε CMa (B2 II). They arrived at the

strong conclusion that the simplest model (from a hierarchy of

increasing complexity) to fit both the X-ray spectrum and the

five observed EUV iron emission lines between ≈ 40 and 70

eV simultaneously is one where: (i) the hot gas is distributed

through a cold background wind, (ii) the opacity of this cold

wind for EUV radiation and soft X-rays is included, and (iii)

the emitting plasma has a continuous temperature distribution.

Contrary, a two-temperature model is not sufficient. The total

number of free parameters of this fit model is five, where Ṁ/v∞
is taken as a free parameter which characterizes the wind atten-

uation. Notice that all three items (i) to (iii) are also specific to

the model presented here.

Cohen et al. make a power-law Ansatz for the tempera-

ture dependence of the differential emission measure, Q ∝ T a,

where Q is defined as Q(T ) ≡ npnedV/dT , i.e.

εν =

∫

npne Λν(T ) dV =

∫

Q(T ) Λν(T ) dT. (28)

Translating this to our approach from Sec. 2 where temper-

ature changes are due to (radial) cooling zones only, T = T (ξ),

but where the shock-temperature is not a function of radius, we

have

Q ∝ f 2 dξ

dg
∝ 1

g2g′
, (29)

with the functions f and g – where T ∝ g – defined in (2),

and g′ ≡ dg/dξ. In the second proportionality of (29) we made

use of the approximation that the pressure is almost constant

in the cooling zone, f ∝ 1/g, cf. (8) and (26). For radiative

shocks then, from (11), g ∝ ξ2/7, i.e. g′ ∝ g−5/2, or a = 1/2.

In contrast, for adiabatic shocks, g is seen from (26) to vary

between g ∝ ξ2 and g ∝ ξ2/3, which corresponds to a = −5/2

anda = −3/2, respectively. Cohen et al. (1996) found from their

fits a = −0.8±0.35, which lies within this range of a-values for

radiative vs. adiabatic shocks. We can even push this argument

further. Our calculated X-ray spectra in the present paper are

dominated by inner radiative shocks, with the outer adiabatic

shocks serving more or less as a correction term to the soft X-

ray flux. On the other hand Cohen et al. analyze a rather thin

wind with Ṁ ≈ 2 . . . 6 × 10−8 M�/yr, and correspondingly

derive filling factors of<∼ 0.1 which are larger than our values in

Table 2. (Notice that the global filling factor of Cohen et al. 1996

is identical to our local filling factor since the latter is assumed

to be radius independent.) Both the low Ṁ and the rather large

filling factor are hints that cooling by adiabatic expansion may

already be competitive to radiative cooling in this B star wind at

low heights – which in turn could be a plausible explanation why

the value for a of Cohen et al. lies between the above values for

radiative vs. adiabatic shocks. However, this is speculation since

in principle we believe that some kind of radial temperature

stratification is realized in the wind; our claim is therefore only

that our fit model is consistent with the findings of Cohen et al.

(1996).

4. Summary

We have generalized the isothermal shock emission coefficient

of the X-ray transfer model of Hillier et al. (1993) to include the

effects of radiative and adiabatic cooling layers behind shock

fronts. Under the assumption that all shocks in the wind have

the same temperatures and filling factors, our fits to high-quality

ROSAT PSPC spectra of three selected O stars are of about the

same quality as the two-component fits of Hillier et al., where

the latter authors however had to adjust twice as many param-

eters. Furthermore, the shock temperatures and filling factors
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derived from the two-component model are consistent with the

temperature and density stratification of cooling zones. This

supports the idea that the observed two- (or multi-) component

X-ray spectra can be traced back to such stratified cooling zones.

However, we cannot exclude an additional contribution from a

radius-dependency of shock temperatures and filling factors.

Our model establishes a robust framework within which cer-

tain X-ray properties of hot stars – here: temperatures and filling

factors – are defined, probably in an averaged sense. Therefore,

it should be adequate to analyze the sample of ROSAT PSPC

observations of 42 O stars. However, the model is meant as a first

approximation only to the real structures which emit X-rays in

hot star winds. A discussion of such possible flow phenomena,

including shell collisions and ‘old’ hot gas leftover from shock

destruction, is given in Feldmeier (1995).

The ROSAT data pose severe constraints on hydrodynamic

models which try to synthesize the X-ray spectra from the emis-

sion of instability-generated shocks. The most serious concern

is the rather small amount of hot gas usually predicted from

these models, with filling factors being one or two orders of

magnitude below those derived from spectral fits; but this could

be the result of our present lack of knowledge of the trigger

mechanism. The spectrum synthesis from time-dependent hy-

drodynamic wind models will be the subject of a forthcoming

paper.
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Appendix A: inner and outer mass flow of the adiabatic shell

Here we derive an approximate expression which relates the

properties of an adiabatic SA shell with the jump in the mass

loss rate of the star at the time the shell is released.

Using (17), the mass flow Ṁ = 4πr2ρv through a sphere of

radius r can be written as

S ≡ ησV =
Ṁ

4πvfρ0

, (A1)

where S is the dimensionless mass flux. Since S and Ṁ are

constant outside the shell, we have (using ρ0 ≡ ρf,prr
2
f )

Ṁsource = Ṁin = 4πρf,prr
2
f v∞

vf

v∞
Sin = Ṁout

vf

v∞
Sin, (A2)

where Ṁsource is the mass flux of the source at r = 0, and Ṁin

(resp. Ṁout) is the mass flow ahead of the reverse (resp. forward)

shock. Using (18), we have

Ṁin

Ṁout

=
1

1 − κf

Sin. (A3)

This ratio is infinite in SA since they used v∞ = 0 = Ṁout.

Applying the usual shock jump conditions, and assuming the

analytical SA solution in the neighborhood of the contact dis-

continuity (their Eq. 11, our Eq. 26) to apply over the whole

shell (see Fig. 7 for the accuracy of this approximation), we

have finally

Ṁin

Ṁout

=
1

1 − κf

η3
r

Θ

(

1 +
12

5

[(ηc

ηr

)3

− 1
])

. (A4)

For sufficiently weak shocks κf ≈ 0 and ηr ≈ ηc ≈ 1, and the

last equation reduces to a trivial consequence of the presumed

pressure constancy inside the shell,

Ṁin

Ṁout

≈ Tpo,for

Tpo,rev

= Θ
−1. (A5)

Appendix B: shock collisions in the outer wind

A SA shell, which is enclosed by two adiabatic shocks, expands

on its propagation through the wind: the front of the outer, for-

ward shock propagates faster than the shell center (i.e., the con-

tact discontinuity), whereas the front of the inner, reverse shock

propagates slower than the shell center. Therefore, if similar SA

shells follow upon each other, every forward shock should even-

tually overtake the reverse shock ahead of it. The question arises

(cf. §2) whether this leads to an outer, hot corona surrounding

the star. In this appendix we show that instead the shock collision

causes a sawtooth-like sequence of forward shocks to occur. Its

filling factor of hot gas is roughly comparable with that of the

inner SA shells. However, the forward shocks decay with radius,

even if the inner SA shocks have constant strength (at least long

before any mutual interactions). Since both the SA shells and

the forward shocks are similarity solutions asymptotically (i.e.,

for large distances between shells or shocks), this illustrates how

a shock collision can change the similarity parameter δ. In the

absence of detailed knowledge of the wind dynamics, we took

this in §2 as a justification to fix the value of δ from the outset.

We set up the following hydrodynamic test of multiple adi-

abatic shells. The initial data are for a stationary, spherical sym-

metric wind of constant velocity, and density ρ ∝ 1/r2. In the

SA solution, a single shell is created by a sudden jump in density

and speed at the source location r = 0 at time t = 0. To create

multiple shells instead, we use the step function

F (t) = H
(

tmod τ − 1
2
τ
)

, (B1)

where H is the Heavyside function, and τ is the time interval

between the release of two shells. We apply as an inner boundary

condition

v(rmin, t) = v0[1 − F (t)] + vsF (t),

ρ(rmin, t) = ρ0[1 − F (t)] + ρsF (t). (B2)

The values for v0, ρ0 and vs, ρs are chosen from the ana-

lytical approximation (26) to the single-shell SA solution for

κf = 0.1, and equal post-shock temperatures, Θ = 1. We

chose vf = 1 and ρ0 = 1/r2
min. The temperature of the start
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Fig. 13. Hydrodynamic test calculation of multiple SA shells, with a

forward/reverse shock merger at r ≈ 0.45 (normalized units). Dots

indicate pre-shock gas, filled circles post-shock gas.

model, and also at the inner boundary over the course of time,

is T = 10−8(1 − κf )
2/γ (we use units k = mp = 1 here, so that

Tpo = 3
16
κf

2), resulting in strong shocks of Mach number≈ 103.

Finally, τ = 0.05 is chosen, which results in a shock collision

at r ≈ 0.45. We use 5,000 logarithmically spaced grid points

from rmin = 0.01 to rmax = 1. As long as the relative speed of

forward and reverse shocks remains constant, the logarithmic

grid ensures a shell to be equally well resolved at all radii, since

both the grid distance and the shell extension grow ∝ r. (In Fig.

13, already 1330 grid points lie in between rmin and the loca-

tion of the first reverse shock.) The model is followed up to a

time t = 4, corresponding to 4 flow times from the inner to the

outer grid boundary. However, even at t = 1 the flow structure

is almost identical to the one in Fig. 13. We used a time-explicit

hydrodynamics code which solves the continuity, momentum,

and energy equations in integrated form on a staggered grid by

applying van Leer (1977) advection. For details we refer to Reile

& Gehren (1991) and Feldmeier (1995).

We find from this simulation that the shock collision trans-

forms the inner shell sequence into an outer forward shock se-

quence, where the latter decays with radius. We now look into

this transformation in some more detail.

1. The use of a step function creates two forward facing

rarefaction waves (cf. Courant & Friedrichs 1948; Zel’dovich

& Raizer 1967) with a linear velocity law between subsequent

shells, seen at A or B in Fig. 13. The waves are separated from

each other by a region of v(r, t) = r/t, ρ(r, t) = const/t3 (the

density plateau at B). A forward shock occurs both at the tail of

the inner and at the head of the outer wave. (The shocks appear

to be isothermal since their cooling zones are not resolved. We

will not refer to these shocks any more in the following, but

only to the shell enclosing shocks.) Fluid particles propagate

through this whole domain from right to left. Notice that at A

the rarefaction waves and the shell shocks are still separated by

regions of stationary wind (v = const and ρ ∝ 1/r2), while at B

and beyond they are in contact.

2. The velocity law of the rarefaction waves causes a de-

creasing pre-shock speed at both shocks from about C on. The

shocks ‘project’ this velocity law into the post-shock domain,

cf. D and beyond. In this way, the forward shock is accelerated,

and the reverse shock is decelerated. At this stage, the shocks

move away from the shell center in a symmetric fashion.

3. However, from E on an asymmetry shows up between

forward shocks (getting weaker, and less accelerated) and re-

verse shocks (getting stronger, and more strongly decelerated).

The reason is that the forward shock propagates into a strongly

increasing density stratification, the reverse shock into a de-

creasing stratification.

4. From F to G, the reverse shock propagates through the

broad density minimum, and sweeps up the gas located there. H

and I show the forward and reverse shock just before merging.

5. Beyond K then, only forward shocks exist, which decay

with radius. Finally, notice that for the inner shell sequence a gas

element can undergo at most one shock transition by entering

a shell, while for the outer forward shock sequence every gas

element undergoes repeated shock transitions. This is indicated

in the velocity diagram of Fig. 13 by marking pre-shock gas

with dots, and post-shock gas with filled circles.

This sequence of events depends somewhat on the special

boundary conditions (step function) chosen. However, by apply-

ing instead a power law decline in source conditions after shell

throw-off, the shell sequence is again transformed into a forward

shock sequence, so that this result should hold quite generally.

Notice that the use of a power law leads to decelerated shells

which can no longer be described by the SA similarity variable

(16).
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Abstract. X-ray spectra of hot, massive stars provide convinc-

ing evidence for thermal emission that extends far out into their

stellar winds. Accordingly, strong shocks were proposed as

sources of the X-ray emission, where the shocks result from

the line-driven instability. We show from hydrodynamic sim-

ulations that the emission from individual shocks which grow

out of initially small perturbations may fall one or two orders of

magnitude below the observed flux. Instead, we find that mutual

collisions of dense shells of gas formed in deep wind regions

can lead to shocks with a much stronger emission which almost

matches the observed flux.

This model predicts strong variability of the X-ray emis-

sion, which is not observed. We propose that – in contrast to the

presently assumed spherical symmetry of the wind – the emis-

sion stems from a large number of independent, radial cones so

that fluctuations average out over the whole emitting volume.

Key words: stars: early-type – X-rays: stars – hydrodynamics

– instabilities – shock waves

1. Introduction

Over the past years, it has become possible to determine fun-

damental stellar parameters like radii and masses from quanti-

tative spectroscopy of radiation driven winds of hot, luminous

stars (Kudritzki & Hummer 1990; Pauldrach et al. 1994; and

references therein). The recently proposed wind-momentum lu-

minosity relation (Kudritzki et al. 1995) opens the prospect of

using OBA supergiants as extragalactic distance indicators. A

vexing problem, however, which affects the detailed analyses of

the winds, is their non-stationarity. Observational evidence for

this comes especially from (i) the so-called discrete absorption

components, which propagate through the absorption troughs of

unsaturated P Cygni profiles (Prinja & Howarth 1986; Henrichs

1988; Prinja & Fullerton 1994); and (ii) the strong X-ray fluxes

from essentially all OB stars, which are nowadays interpreted to

be indicative of vigorous flow disruptions. The X-ray emission,

e.g., may have severe implications for the ionization balance in

Send offprint requests to: A. Feldmeier. feld@usm.uni-muenchen.de

the wind (Pauldrach et al. 1994; MacFarlane et al. 1994). In the

present paper we investigate certain wind features which result

from the strong line-driven instability, and which may be the

origin of the X-ray emission.

1.1. Observations

a) X-ray luminosity. The most distinctive property of the X-ray

emission from O stars is the scaling of their X-ray luminos-

ity with the bolometric luminosity, Lx/Lbol ≈ 10−7 (Harn-

den et al. 1979; Seward et al. 1979; Long & White 1980;

Pallavicini et al. 1981; Cassinelli et al. 1981). Sciortino et al.

(1990) find from the Einstein catalog of 289 Galactic O stars

that Lx ∝ Lα
bol, with α = 1.08 (−0.22,+0.06), and a mean

value log(Lx/Lbol) = −6.4. However, the total range of values

reaches from −5.4 to −7.4 (Chlebowski et al. 1989). From de-

tailed spectral fits to ROSAT PSPC data for 42 O stars, Kudritzki

et al. (1996) find log(Lx/Lbol) = −6.7 with somewhat tighter

bounds of −6.0 and −7.2. The range of validity of the Lx/Lbol

relation seems to be confined to the O stars: from ROSAT obser-

vations of near-main-sequence B stars, Cassinelli et al. (1994)

find that log(Lx/Lbol) ≈ −7 holds only up to spectral type B1.

By B3, the X-ray luminosity has already dropped to 10−9Lbol.

Furthermore, Wessolowski (1996) finds no relationship between

Lx and Lbol from ROSAT PSPC data for 61 WN-type Wolf-

Rayet stars. With the availability of large stellar samples and/or

high-quality spectral data it has recently become possible to

search for weaker dependence of Lx on other stellar parameters

than Lbol: Sciortino et al. (1990) from the Einstein catalog

find no correlation of Lx with the wind terminal velocity, stellar

rotation rate, and mass loss rate; but they do find strong cor-

relations with the wind momentum flux, Ṁv∞ (Ṁ the mass

loss rate; v∞ the terminal velocity), and with the wind kinetic

energy flux, 1
2
Ṁv2

∞. In contrast, Kudritzki et al. (1996) find

a strong correlation of the temperature of X-ray emitting gas

(which was not considered by Sciortino et al. 1990) with the

ratio 1
2
Ṁv2

∞/Lbol, and a strong correlation of Lx with Ṁ/v∞,

where the latter quantity is an (approximate) measure of the

mean wind density. However, more systematic studies are still

needed.

b) Spectrum. The X-ray spectra of OB stars are consistent

with a thermal origin in a plasma of temperatures 106 to a few
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107 K. To achieve good fits to the data using a thermal emis-

sion model, three prerequisites have been found to be necessary

over the years (Cassinelli et al. 1981; Cassinelli & Swank 1983;

Hillier et al. 1993; Corcoran et al. 1993, 1994; Cohen et al.

1996; Feldmeier et al. 1996): (i) wind absorption has to be in-

cluded, especially for soft X-rays below 1 keV; (ii) the X-ray

emission must extend far out into the wind; and (iii) a tempera-

ture stratification has to be assumed (or at least two independent

hot components). Direct observational evidence for the thermal

origin of the X-ray emission comes from the recent detection

of line emission using the BBXRT and ASCA (Corcoran et al.

1993, 1994). (However, already Cassinelli & Swank 1983 found

emission near 2 keV in the Einstein SSS spectrum of ζ Ori,

which they suggested could be interpreted as line emission.)

Waldron (1991) finds direct evidence for wind absorption from

a correlation between X-ray hardness ratio and 6 cm radio data.

Finally, we mention that the derived filling factors of hot gas are

on the order of 0.1 to 1% for O stars (Hillier et al. 1993) and

may possibly approach unity for near-main-sequence B stars

(Cassinelli et al. 1994).

c) Variability. Collura et al. (1989) analyzed Einstein IPC

data of 12 OB stars for variability. Three stars were found to

be long-term variables above the 4σ significance level, e.g.,

ζ Puppis with an effective fractional amplitude of ≈ 40% in the

soft band on a time scale of >∼ 1 day. Only τ Sco was found

to show marginal short-time variability (above the 3σ signifi-

cance level) during a time scale of ≈ 50 s and with fractional

amplitude 30%. However, as reported in Berghöfer & Schmitt

(1994a), a reanalysis of the data by the above authors provided

no evidence for variability of ζ Pup. Cassinelli et al. (1994) did

not find variability on time scales larger than 1 ks for any of the

12 near-main-sequence B stars they surveyed with the ROSAT

PSPC. The short-time variability below 1 ks that was found for

3 stars – e.g. for τ Sco with period of 125 s – was attributed to

spacecraft wobble. The study of Berghöfer & Schmitt (1994a)

using ROSAT PSPC data gives no indication of variability for

σ Ori and ζ Ori (the latter star will be the principal subject of

the present paper) on time scales from hour(s) to 3 years – with

the one notable exception (Berghöfer & Schmitt 1994b) of a

30% increase in the count rate of ζ Ori in the hard band (0.6

to 2.4 keV) from Sept 23 to Sept 25, 1992. The count rate then

returned to its value before the increase over the next ≈ 0.5 to 1

year. In contrast, during Sept 19/20, 1991 the level of absolute

variations in the X-ray count rate of this star was well below 10%

for 20 observations taken with an average integration time of

≈ 1000 s. The analysis of 57 OB stars from the ROSAT all-sky

survey also showed no significant variability on a time scale of

≈ 2 days (Berghöfer & Schmitt 1995). A recent, interesting de-

tection of X-ray variability is reported in Berghöfer et al. (1996)

for ζ Pup: they find a periodic modulation with P = 16.7 hours

both in the equivalent width of the Hα line and in the count

rate between 0.9 and 2.0 keV, the latter with an amplitude of

6%. This modulation is indicative of periodic variations in the

density at the wind base.

1.2. Critical review of previous models

We review here the mechanisms proposed for the X-ray emis-

sion from single O stars. This rules out colliding winds as sites

of X-ray emission. We also do not consider shocks close to

wind compressed disks – the latter proposed by Bjorkman &

Cassinelli (1993) to occur possibly for Be stars.

a) Base corona. Hearn (1972, 1973) suggested the dissipa-

tion of radiation driven sound waves as a mechanism of chromo-

spheric or coronal heating in hot stars, and estimated the thick-

ness of a base corona (Hearn 1975) from the equivalent width

of Hα to be ≈ 1 R∗ for ζ Ori. The latter number was revised

downwards to be smaller than 0.1 R∗ by Cassinelli et al. (1978).

Cassinelli & Olson (1979) studied a coronal model to explain

the observed superionization in OB star winds by Auger ioniza-

tion. However, soon after the launch of the Einstein satellite,

this base corona model was found to be inconsistent with the

X-ray data from O stars (Long & White 1980; Cassinelli et al.

1981; Cassinelli & Swank 1983), since the soft X-rays below

1 keV were not so strongly attenuated by wind absorption as

the slab model would suggest. Especially, the K-shell edge of

oxygen at ≈ 0.6 keV was not detected. A corona as dominant

X-ray source was also ruled out for the O4 If star ζ Puppis from

the non-detection of the coronal [Fe xiv] 5303 Å line (Baade &

Lucy 1987). – Waldron (1984) proposed a recombination stel-

lar wind model for early-type stars where the wind is thermally

initiated by a corona, and at some distance from the star the gas

cools and recombines to make radiative driving efficient. Due

to the large emission measure of the corona, helium is mostly

doubly ionized, thereby reducing the wind opacity for X-rays.

Still, this model is subject to the same principal criticisms as

the static corona and can also be ruled out (Cassinelli & Swank

1983; Baade & Lucy 1987).

b) Blob model. Lucy & White (1980) proposed a phe-

nomenological model for the structure of unstable line-driven

winds (where the instability mechanism was suggested by Lucy

& Solomon 1970). Here, radiatively driven clumps plough

through ambient wind gas, where the latter is shadowed by the

blobs and is therefore not radiatively driven; X-rays should then

originate from the shocks preceding the blobs. While free pa-

rameters of the model can be adjusted to give the observed X-

ray luminosity of, e.g., ζ Pup, the spectrum is inconsistent with

the observations: since the bow shocks should have maximum

strength close to the star, soft X-ray attenuation is again far too

strong in this model (Lucy 1982; Cassinelli & Swank 1983).

c) Forward shocks. The blob model was revised by Lucy

(1982) to include the effect of blob-blob shadowing. The gas

dynamical description was modified from a sequence of blobs to

a sawtooth-like sequence of radiatively driven forward shocks.

Here, inner shocks shadow outer shocks and cause them to de-

cay. As a consequence of this shock destruction mechanism,

X-ray emission can continue far out into the terminal flow. Al-

though, for the first time, a strong flux of soft X-rays is predicted

in accordance with the observations, the model suffers from the

shortcoming (Lucy 1982; Cassinelli & Swank 1983) that the

predicted X-ray luminosity is a factor of ≈ 20 too small. How-
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ever, by the ad hoc assumption that a small number of shocks is

exceptionally strong, the model can be brought into agreement

with the data (Cassinelli & Swank 1983).

d) Inverse Compton scattering. (This model only attempts

to explain an eventual extra component of hard X-ray emis-

sion.) White (1985) identified the nonthermal radio emission

from some of the most luminous hot stars (Abbott et al. 1984;

Bieging et al. 1989) with synchrotron radiation from electrons

which are accelerated to relativistic speeds by the first-order

Fermi mechanism in wind shocks of the type proposed by Lucy

(1982). Pollock (1987) and Chen & White (1991) proposed that

inverse Compton scattering of stellar UV photons by this rela-

tivistic electrons can generate hard X-ray emission at energies

larger than 2 keV (and γ-ray emission up to 50 MeV). (How-

ever, due to this Compton cooling these relativistic electrons

close to the star cannot survive to large radii to produce the

above mentioned synchrotron radiation: therefore, as proposed

by White & Chen 1992 and Chen & White 1994, the accelerating

shocks have to propagate beyond the radio photosphere at> 100

stellar radii to supply fresh relativistic electrons.) The emerging

spectra should follow a power law, Fν ∝ E−1/2, which could

explain the shallow decline of the SSS data for three Orion belt

stars (Cassinelli & Swank 1983): the measured decline is indeed

much flatter than the exponential tail of a thermal component

with temperature of a few million degrees as derived from the

spectrum below 2 keV.

e) Reverse shocks. After the fundamental finding of Owocki

et al. (1988) that the line-driven instability of early-star winds

leads to the formation of strong reverse shocks instead of strong

forward shocks, MacFarlane & Cassinelli (1989) set up a phe-

nomenological model for the thin wind of τ Scorpii (B0 V).

Here, a large base perturbation leads to the formation of a dou-

ble shock – a pair of strong reverse and forward shocks en-

closing a dense shell – which propagates out through the wind.

By adjusting the strength of the shock (via the base perturba-

tion), this double shock can reproduce the Einstein spectra

of τ Sco within an order of magnitude. – First results on X-ray

synthesis from full hydrodynamic simulations, where hot gas

evolves from the growth of initially small perturbations due to

the line-driven instability, are due to Cooper & Owocki (1992,

1994) and Cooper (1994; cf. also Cohen et al. 1996). They use

a different approach for the thin winds of early B stars near

the main sequence, and for thick winds of O supergiants: for

thin winds, radiative cooling is assumed to be unimportant, and

only adiabatic cooling is included in the energy equation. This

leads to large amounts of hot gas in the wind – however, still

not enough to explain the observed X-ray luminosity. This is

another hint that in thin winds large fractions of the gas must

be X-ray emitting (Cassinelli et al. 1994). For thick winds, on

the other hand, Cooper & Owocki (1992) report severe numer-

ical problems with including radiative cooling. They therefore

calculate an isothermal wind structure, which should be a fairly

good approximation to the actual wind dynamics because of

short radiative cooling zones. From the properties of the cal-

culated shocks (their mass inflow and velocity jump, i.e., their

temperature), Cooper & Owocki calculate the corresponding X-

ray spectra by assuming steady-state radiative cooling zones of

known emission behind these shocks. Surprisingly, the calcu-

lated X-ray luminosity for their O supergiant model is a factor

of 10 larger than the observed value (while the spectral shape

is about the same). We shall return to this issue in Sect. 3.

In the following we present an extension to this last item, e).

We find in our models that single reverse shocks give an X-ray

emission which is typically one or two orders of magnitude be-

low the observed flux. Yet, mutual collisions of dense shells of

gas compressed in the shocks give rise to a much stronger emis-

sion which can almost reproduce the observations. The paper

is organized as follows. After a discussion of our technique of

hydrodynamic simulations and X-ray synthesis in Sect. 2, we

examine in Sect. 3 the X-ray emission from the wind structure

at selected instants. This will give the clue to the origin of strong

emission in shell-shell collisions, which are the topic of Sect. 4.

The dichotomy between the observed constancy of X-ray emis-

sion and the variability of synthesised spectra is discussed in

Sect. 5. Finally, Sect. 6 gives a summary and prospects for fu-

ture work.

2. Technique

2.1. Hydrodynamics

The continuity, radial momentum, and energy equation for a

spherically symmetric flow (the latter approximation is dis-

cussed below) are,

∂ρ

∂t
+

1

r2

∂

∂r

(

r2ρv
)

= 0 (1)

∂(ρv)

∂t
+

1

r2

∂

∂r

(

r2ρv2
)

= −
∂p

∂r
− ρg + ρgl, (2)

∂e

∂t
+

1

r2

∂

∂r

(

r2ev
)

= −
p

r2

∂

∂r

(

r2v
)

−Q(ρ, T ), (3)

where the standard symbols are used, and where gl is the ra-

diative line acceleration; e is the thermal energy density, which

for an ideal gas is e = p/(γ − 1); in the following, γ = 5/3

is assumed. Q is the total power radiated per unit volume. (We

neglect heating by re-absorption.)

The assumptions underlying our present approach are the

same as in Feldmeier (1995), with the formulation of the line

force as developed by Owocki et al. (1988) and Owocki (1991).

We here only discuss some central concepts.

(1) We use a standard time-explicit, Eulerian finite differ-

ence scheme (cf. Reile & Gehren 1991) to solve the above equa-

tions on staggered grids. The advections terms are calculated

using van Leer (1977) fluxes through the boundaries of adja-

cent control volumes, and we apply the so-called “consistent

advection” after Norman et al. (1980). At the inner boundary –

which is chosen to be the stellar photosphere of continuum opti-

cal depth unity – we use the method of Thompson (1987, 1990)

to fix the Riemann invariants, here in an exponential density

stratification through which a perturbation propagates. At the

highly supersonic outer boundary, zeroth order extrapolation is
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adequate. – For details on the operator splitting sequence, arti-

ficial viscosity to smear out shock fronts, and the calculation of

pressure work and radiative cooling (including time step limita-

tions), see Feldmeier (1995). We add here that heat conduction is

not included in our present simulations. While heat conduction

may be important at temperatures >∼ 107 K (e.g., MacFarlane

& Cassinelli 1989), we accept the error introduced by neglect-

ing it in favor of keeping the number of physical processes and

interacting phenomena small.

(2) Spherical symmetry is a severe restriction of the present

approach, and is only justified by computational demands.

While in the final section of this paper we shall interpret the

calculated hydrodynamical structures as corresponding approx-

imately to independent radial wind cones of small opening an-

gle, our procedure for X-ray synthesis (cf. below) assumes full

4π symmetry – so that fluctuations in the hydrodynamical struc-

ture lead to strong X-ray variability, cf. Sect. 5.

(3) The line force is calculated by using the so-called

“smooth source function” method (Owocki 1991; Owocki &

Puls 1996). The total force is the sum – weighted by the line-

strength distribution function of Castor et al. (1975) – of the

force on a singlet transition, for which a pure Doppler profile

and a constant mass absorption coefficient κ is assumed. The

latter should be a good approximation for strong resonance lines

and lines with a lower metastable level, both of which dominate

the line force. We assume further that no line-overlap occurs.

The force on a single line is calculated via a formal integral with

prespecified, local source function. In the present paper we use a

source function which corresponds to purely geometric dilution

of the radiation field, i.e., to optically thin lines. To calculate the

flux, the Doppler width of a line is resolved by three frequency

points, where the frequency integral extends over ±3 Doppler

widths. The angle integral is approximated by a one-ray quadra-

ture, and, finally, the temperature dependence of the line force is

taken into account using the results of MacGregor et al. (1979)

(4) In the expression for the total power radiated, Q =

nenHΛ(T ), we use a power law fit to the Raymond et al.

(1976) cooling function for an optically thin plasma, Λ(T ) =

A (T/T0)δ , with δ = −1/2, T0 = 106 K, and A = 1.6 ×
10−22 erg cm3 s−1. While an interval-wise power-law fit would

be more accurate, we use the above global approximation in

order to keep the temporal evolution of the cooling layer due

to the oscillatory thermal instability (Langer et al. 1981, 1982)

as simple as possible – since, as discussed by Walder & Folini

(1996), this evolution shows a complex dependence on the value

of δ. The significance of this oscillation for stellar wind simu-

lations is that the cooling zone of minimum extent during each

cycle is shorter than any achievable grid resolution. This results

in a “loss” of the cooling layer, i.e., the shock collapses to an

isothermal shock. To prevent this, we alter the cooling function

to have a stable exponent δ = 2 below some temperature Tswi

(Feldmeier 1995). We use hereTswi = 15Teff (= 4.7×105 K; see

below): smaller Tswi can essentially not prevent the collapse of

cooling zones, while larger Tswi would influence the soft X-ray

spectrum emitted.

In the present paper we study an O supergiant wind model

with stellar parameters (listed in Table 1) close to that of ζ Ori.

This star should be an ideal candidate to test X-ray emission

models since: (i) it has among the highest signal-to-noise ratio

within our full sample of 42 O stars observed with the ROSAT

PSPC (Kudritzki et al. 1996); and (ii) its stellar and wind pa-

rameters are known to a good accuracy. Additionally, there are

no indications that helium recombines in the wind of ζ Ori.

In contrast, for the dense wind of the O supergiant ζ Puppis,

Hillier et al. (1993) found evidence that helium recombines to

He+ from about 6 R∗ on. This enhances the background opacity

enormously, and consequently these authors concluded that the

observed X-rays at ≈ 0.5 keV must be emitted from radii larger

than 30 R∗, and X-rays below 0.2 keV from r > 100 R∗. With

our present hydrodynamic models we see no possibility to gen-

erate or maintain the corresponding amounts of hot gas at these

large distances (cf. Sect. 3). However, since ζ Pup is possibly

the only, at most one of a very few stars in our sample which

shows helium recombination, we feel justified to analyse the

X-ray emission properties of the more standard candidate ζ Ori

instead, and leave the re/investigation of the peculiar wind of

ζ Pup (especially the location of He recombination) to a future

study.

Photospheric parameters for ζ Ori are taken from Voels et

al. (1989), while the wind terminal velocity and interstellar hy-

drogen column density are from Haser (1995). For the mass loss

rate we assume an average of the results obtained by Lamers &

Leitherer (1993) from Hα, Ṁ = 3.9×10−6 M�/yr, the reanal-

ysis of these data by Puls et al. (1996), Ṁ = 3.6×10−6 M�/yr

for β = 1, and the value from radio measurements, again from

Lamers & Leitherer (1993), Ṁ = 2.5×10−6 M�/yr. As a typ-

ical value for O star winds, we set the CAK exponent to α = 0.7
(cf. Pauldrach et al. 1986), and the line force constant is fixed

at a value which results in the average above mass loss rate,

Ṁ = 3 × 10−6 M�/yr. The line strength cutoff κm of Owocki

et al. (1988) terminates the line list at the strongest lines, in or-

der to prevent the development of subgrid structure. The thermal

speed is representative for driving ions like C, N, and O. Finally,

the photospheric barometric scale height and the acoustic cutoff

period (above which sound waves cannot propagate vertically

through the atmosphere) are listed in Table 1.

2.2. Photospheric perturbation

In time-dependent wind simulations so far (Owocki et al. 1988;

Owocki 1992), a photospheric sound wave is assumed to trig-

ger perturbations that grow in the presence of the line-driven

instability. However, the coherence of the wave leads to a pe-

riodic wind structure, at least for small wave amplitudes. As

will become clearer in later sections, the amount of hot gas in

this regular structure is too small to explain the observed X-ray

flux. Therefore, to generate more hot gas in the wind, we pro-

pose two different types of irregular perturbations which should

lead to enhanced dynamical interactions in the wind, e.g. shell

collisions, and therefore possibly to enhanced heating.
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Table 1. Stellar parameters for ζ Ori.

Spectral type O9.7 Ib

Temperature Teff 31 500 K

Mass M 34M�

Gravity log g 3.2

Radius R∗ 24R�

Luminosity L 5.1 × 105L�

Terminal speed v∞ 1 850 km/s

Mass loss rate Ṁ 3 × 10−6 M�/yr

Helium fraction nHe/nH 0.1

Distance d 450 pc

ISM column density log(NH cm2) 20.34

Thomson coefficient σe 0.34 cm2/g

Eddington factor Γ 0.39

CAK exponent α 0.7

Line force constant κ0 vth/c 5950 cm2/g

Line strength cutoff κm/κ0 10−3

Sound speed (isoth.) a 20.7 km/s

Thermal speed vth 0.3 a
Scale height H 2.6 × 10−3 R∗

Acoustic cutoff period Tcut 7.34 h

The first is a kind of “tunable” sound wave, where at certain

instants the amplitude and period of the wave changes abruptly.

More specifically, after a certain coherence time T has elapsed,

over which the wave has an amplitude A and period P , we

choose three random numbers 0 < ξT , ξA, ξP < 1 to define a

new coherence time, wave amplitude, and wave period by

X = X (1−ξX )
m XξX

M . (4)

Here, X stands for any of T,A, or P , and subscripts ‘m’ or ‘M’

refer respectively to the prespecified minimum or maximum

of the corresponding quantity. To avoid discontinuities in the

amplitude, we furthermore apply these changes only after a full

wave cycle is finished. Finally, Tm = Pm = 103 s and TM =

PM = 104 s is chosen, and we consider the two cases AM = 0.3
resp. 0.5, where AM/Am = 10 is assumed. The time series of

the photospheric velocity for AM = 0.3 is shown in Fig. 1, its

power spectrum in Fig. 2.

While our perturbation amplitudes are chosen to be as large

as possible (to generate strong wind structure) – yet still be sub-

sonic in the photosphere (see below) – the perturbation periods

are determined from the following considerations. The radiative

force which acts on the extremely rarefied, optically thin gas be-

tween strong wind shocks (for a discussion of the typical wind

structure see Sect. 3) causes unresolvably steep velocity fields.

This led Owocki et al. (1988) to introduce the cutoff parameter

κm, by which much shallower, numerically manageable velocity

gradients are achieved. To still be able to reach shock velocity

jumps which are large enough to heat gas to X-ray temperatures,

Owocki et al. (1988) induced large distances between subse-

quent wind shocks by applying photospheric perturbations with

long wavelengths, i.e., with periods as those above. However,

Fig. 1. Time series of the radial photospheric velocity (in units of the

isothermal sound speed) due to a “tunable” sound wave.

Fig. 2. Power spectrum of the sound wave from Fig. 1.

one has to keep in mind that maximally unstable (harmonic)

perturbations have a much shorter wavelength (typically by a

factor of 100) which is on order of the Sobolev length and be-

low (Owocki & Rybicki 1984; where the stationary wind speed

grows by an ion thermal speed over a Sobolev length). There-

fore, it seems possible that – opposite to the wind models to

be discussed in the following – strong structure may (more nat-

urally?) also develop on much shorter lengthscales. However,

such structure is not easily anticipated, and clarification has to

come from future numerical simulations.

To ensure that waves with periods as short as 1000 seconds

(actually even 500 s) can propagate on the numerical grid, we

use 250 equidistant grid points from 1 R∗ to 1.05 R∗. At the

latter radius the wind is already highly supersonic (6.5 a), and

the Doppler effect has stretched the wavelength so that a coarser

grid is appropriate. Over the next 3750 points, a logarithmic grid

with dr/r = const is laid out to 30 R∗. Finally, a short grid with

20 points establishes a smooth link of differentials dr between

the above two grids.

As a second type of photospheric perturbation we consider

the physically somewhat more meaningful Ornstein-Uhlenbeck

(1930) stochastic process (where the latter are generalizations of

discrete Markovian chains to a continuous time variable). This

process is set up here for the stochastic variable u (the velocity

perturbation), and mimics photospheric turbulence via a solu-
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tion of the Langevin equation (cf. Wax 1954 for a collection of

classical papers on the subject, and Risken 1989 for a textbook),

du

dt
+
u

tc

= Γ(t), (5)

where tc is the relaxation time. The fluctuating or stochastic

force, Γ(t), has zero mean (ensemble averages understood) and

a correlation function which corresponds to white noise (the

meaning of the constant q becomes clearer from the next equa-

tion),

〈Γ(t)〉 = 0,
〈Γ(t1)Γ(t2)〉 = qδ(t1 − t2).

(6)

The velocity correlation function is then, for times t1, t2 �
tc found to be (cf. Risken 1989, p. 34),

〈u(t1)u(t2)〉 = 1
2
qtc e

−|t1−t2|/tc , (7)

which gives for time intervals |t1 − t2| � tc,

D(τ ) ≡ 〈(u(t + τ ) − u(t))2〉 ∝ τ, (8)

where D is the so-called structure function. The relation D ∝ τ
is also found for the Lagrangian structure function for fluid tur-

bulence in the Kolmogorov inertial range (cf. Landau & Lifshitz

1989, p. 132; Monin & Yaglom 1987, Sects. 21.2 to 21.4). The

use of the Langevin equation to describe Lagrangian fluid tur-

bulence is reviewed by Pope (1994); cf. also Gail et al. (1974). –

In contrast, however, the inertial range structure function in the

Eulerian frame is found to beD(τ ) ∝ τ 2/3 (Landau & Lifshitz),

so that our use of the Langevin equation to generate a stochastic

process with spectrum E ∝ ω−2 (white noise) at a fixed loca-

tion – i.e., the photosphere – can only be a very approximate

description for inertial range turbulence, which has a spectrum

E ∝ ω−5/3 instead.

For the two models presented in Sect. 3 we have chosen

(via the above variable q) a velocity dispersion σu/a = 0.1 and

0.25. Due to the Gaussian distribution of u(t), this corresponds

roughly to AM = 0.2 and 0.5, cf. Fig. 3. As relaxation time

we assume, in accordance with the periods from the foregoing

sound wave model, tc = 5000 s. The time series of the Langevin

process is shown in Fig. 3, and its power spectrum in Fig. 4.

Notice the white noise form of the spectrum, E(ω) ∼ ω−2, for

frequencies larger than tc
−1.

Finally, we turn to a brief discussion of the physical signifi-

cance of these photospheric perturbations. Using Fourier tech-

niques to separate turbulent (“Gaussian”) from rotational veloc-

ity fields in observed helium profiles, Conti & Ebbets (1977) and

Ebbets (1979) find a turbulent velocity dispersion of≈ 30 km/s,

i.e.≈ 1.5 a for hot supergiants. Even with the principal criticism

that it is not quite clear as to which degree these analyses apply to

expanding atmospheres (Mihalas 1979 and references therein;

Kudritzki 1992; Haser 1995), our turbulent photospheric ve-

locity fields of maximum amplitude δv/a = 0.2 . . . 0.5 used

in the present paper should lie within the margins allowed by

observations.

Fig. 3. Time series of the photospheric velocity due to Langevin tur-

bulence.

Fig. 4. Power spectrum of the signal in Fig. 3.

At least two other types of photospheric perturbations which

may trigger structure formation in the wind are discussed in

the literature: pulsations (for non-radial pulsations in general:

Baade 1991; Fullerton et al. 1996; Gies 1996); for strange mode

pulsations: Gautschy & Glatzel 1990; Glatzel 1994) and macro-

scopic magnetic fields (with emphasis on dipoles: Underhill

& Fahey 1984; Stahl et al. 1993; Bohlender 1994; Henrichs

et al. 1994). However, since the azimuthal coherence scales

of both pulsations and macroscopic magnetic fields are large,

they should be connected (if there is such a connection at all)

with “large-scale” phenomena in the wind, especially with the

so-called discrete absorption components (Cranmer & Owocki

1996) and/or the so-called “bananas” (Owocki et al. 1995) ob-

served in non-saturated P Cygni profiles. – In contrast, the ob-

served constancy of the X-ray fluxes from OB stars gives strong

evidence for the stochastic nature of the emission process. We

return to this issue in Sect. 5.

2.3. Synthesis of X-ray spectra

To calculate the X-ray spectrum emitted from a structured,

spherically symmetric wind we use a formal integral approach

(cf. Hillier et al. 1993; Feldmeier et al. 1996). The absorption

coefficient is given as the sum of bound-free and line opacities

for the cold wind taken from a stationary NLTE model for ζ Ori,

and the K-shell opacity for the elements C, N, O, Ne, Mg, Si,

S (Daltabuit & Cox 1972). The X-ray emission of hot gas is
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Fig. 5. Greyscale rendition of the ROSAT detector response matrix

(drm; including effective detector area) appropriate for observations of

ζ Ori. The dashed white line indicates a detector with infinite resolu-

tion. The null-response at 0.28 keV is due to the Carbon edge of the

entrance window material.

calculated using the recent version of the Raymond & Smith

(1977) code. Finally, ISM opacities are calculated after Morri-

son & MacCammon (1983), and the ROSAT detector response

matrix used to convert incident photon fluxes to count rates is

shown in Fig. 5.

The spectrum shown in Fig. 8 (identical to the one in Feld-

meier et al. 1996) consists of 53 single observations taken over

1.5 years, with integration times typically from 500 to 1500 sec-

onds. The episodic event from Sept 23 to 25 in 1992, when the

count rate increased by ≈ 30% (Berghöfer & Schmitt 1994b)

is not included in our data set, which reaches only to Sept 19,

1992. The dashed line in the figure is a best fit to the data us-

ing the empirical X-ray emission model of Hillier et al. (1993)

where isothermal hot regions of radius-independent tempera-

ture and filling factor are assumed to be distributed through the

whole wind. This fit serves here to find the approximate spec-

trum incident on the detector (before being convolved with the

drm), which is shown as dashed line in the lower panel of Fig. 8.

The corresponding “stellar” emergent spectrum gives an X-ray

luminosity in the ROSAT energy band of Lx = 4.9×1032 erg/s.

3. The X-ray emission at selected instants

In this section we discuss the X-ray emission from the wind at

certain instants when the calculated and observed spectra agree

well. This serves mainly to identify the hot gas responsible for

the emission and to discuss its properties, which suggests that

this gas originates in radial shell-shell collisions. These are the

topic of the next section.

3.1. A wind model out to 100 R∗

As a preparatory consideration we have to determine the spa-

tial extent of the wind relevant for X-ray emission. To this end

we ran a simulation out to 100 R∗. This model uses 7000 grid

points, with 1000 points spaced equidistantly up to 1.1 R∗, and

6000 points spaced according to dr/r = const out to 100 R∗;

the tunable sound wave was used as the triggering perturbation.

The simulation took somewhat more than one cpu month on

a ≈ 20 Mflop workstation, until a model time of 10 days. At

this time, the gas initially located at the inner boundary had

reached the outer boundary, and the whole computational do-

main was influenced by (previous) photospheric perturbations

which triggered the formation of wind structure, and possibly

of hot regions.

Fig. 6 shows a snapshot of the density, velocity, and tem-

perature of the wind at t = 10 d. The dashed line corresponds

to a stationary wind with a β = 0.8 velocity law (Pauldrach

et al. 1986), which serves as an initial condition. The structure

caused by unstable growth at radii below 10 R∗ has been de-

scribed by Owocki et al. (1988) and Owocki (1991, 1992) so

that we limit ourselves here to some additional remarks, espe-

cially on the outer wind structure. – Primary radiative reverse

shocks are destroyed around 5 R∗ (Feldmeier 1995). A strong

shock which is seen in the velocity field of Fig. 6 at ≈ 5.5 R∗ is

a forward shock (preshock side at large radii, postshock side at

small radii), and can be termed a “secondary” shock in that it is

not directly caused by the radiative instability, but is due to fast,

cold, inner gas ramming into slow, hot, outer gas. This latter,

very rarefied intershell gas – which is spread over almost 2 R∗!

– was at former times heated in a reverse shock which was mean-

while destroyed. Since all driving ions are stripped, the radiative

force on this hot gas is negligible and the gas stalls. Furthermore,

because of its low density, radiative cooling is very inefficient,

and the gas can only cool via adiabatic expansion on its advec-

tion to outer wind regions. No essentially new ingredients to the

wind dynamics occur in the outer regions > 20 . . . 30 R∗. Oc-

casionally (e.g., at ≈ 65 R∗ in Fig. 6), relatively strong forward

shocks similar to the one just described form at the inner edge

of an old, hot region. We furthermore find a few, rather strong

reverse shocks in the outer wind, e.g., at 20 and 24 R∗ in Fig. 6.

They show the same characteristics as inner reverse shocks, i.e.,

very rarefied gas is accelerated to high velocities by the large ra-

diative force on optically thin lines, until this fast gas undergoes

a decelerating shock transition. However, we never find more

than three or four of these shocks over the full range from 10 to

100 R∗. The gross appearence of the outer structure is that of a

return to a smooth wind: remaining hot gas cools, velocity gra-

dients smooth out, and the dense shells expand, which leads to a

homogenization of the mass distribution. Since typical velocity

differences inside the shell are of the order of the sound speed,

both the inertia and pressure forces are of the same magnitude

and the shell expansion is due to their combined action.

We mention here as a side remark that one has to be cau-

tious about estimating the extent of cooling zones behind wind

shocks from stationary wind conditions. Such estimates may

differ significantly from the cooling lengths found in dynamical

simulations, especially since in the latter case the gas in front

of reverse shocks is extremely rarefied, and since furthermore a

hierarchy of mutual shock collisions causes abrupt changes in

the cooling zones.

We find that for the above model, at all times, the total spatial

domain from 30 to 100 R∗ contributes less than a few permille to



A. Feldmeier et al.: A possible origin for X-rays from O stars 885

Fig. 6. Snapshot out to 100 stellar radii of the wind perturbed by a tun-

able photospheric sound wave. The density, velocity, and temperature

are marked at each numerical grid point. The dashed line corresponds

to a stationary wind with β = 0.8 velocity law.

the total X-ray emission from the structured wind. This justifies

our consideration of only the restricted range from 1 to 30 R∗

in the following models. (The wind attenuation of X-rays from

30 R∗ to infinity is calculated assuming a stationary wind with

v = v∞ and ρ ∝ r−2.)

3.2. Photospheric sound wave as wind perturbation

Fig. 7 shows a snapshot of the wind perturbed by the tunable

photospheric sound wave of maximum amplitude AM = 0.5,

at 3.5 days after model start. A strong forward shock occurs

slightly above 3 R∗, and terminates only at negative gas ve-

locities. (In the vicinity of this forward shock, at r <∼ 3 R∗,

a strong reverse shock is found.) Such negative velocities ap-

pear regularly in the present models with large perturbation at

the wind base. However, this gas is extremely rarefied and does

not contribute in any observable manner to the X-ray emission;

consequently we forgo here a discussion of the reality of this

inflow. The second, very pronounced shock in Fig. 7 is located

slightly above 6 R∗. The significance of this reverse shock will

be seen below.

Farther out from this very strong shock (with a velocity

jump of 1700 km/s!), only a few more, much weaker reverse

shocks occur (at ≈ 8, 10, 21, 28 R∗), which heat gas to soft X-

ray temperatures of ≈ 1 × 106 K. Yet, the bulk of the outer hot

gas is just leftover from former shock destruction.

The top panel of Fig. 8 shows the observed ROSAT spectrum

of ζ Ori together with the spectrum synthesised from the wind

Fig. 7. Snapshot of the wind structure 3.5 d after model start. The

photospheric disturbance is a tunable sound wave.

structure of Fig. 7. Both at soft and hard energies, the calculated

flux matches the observed flux well; the maximum deviation, at

≈ 0.6 keV, is a factor of 3. The bottom panel of the figure

shows the number of photons incident on the detector, both for

the time-dependent wind model and for the best fit to the data.

From the model spectrum we find Lx = 5.4 × 1032 erg/s, in

good agreement with Lx = 4.9 × 1032 erg/s from the data fit.

It therefore appears that the line-driven instability is able to

generate sufficient amounts of hot gas in the time-dependent

wind model to match the ROSAT spectra from these stars.

This comes quite as a surprise for the following reason: the

best fit to the ROSAT data of ζ Ori, assuming isothermal hot gas

of radius-independent temperature T and volume filling factor

f as the thermal X-ray source gives T ≈ 106.5 K and f ≈ 0.01

(Feldmeier et al. 1996), where the filling factor refers to hot gas

at the density of the stationary wind. While most hot gas in Fig.

7 has indeed temperatures between 106 and 107 K, the gross

density of this gas is (at least) a factor of 30 to 50 below that

of the stationary wind, and its filling factor is smaller than 0.5.

Since the emission scales∝ fρ2, this implies that the X-ray flux

from the time-dependent structure should be a factor (at least)

20 to 50 below the ROSAT data.

Cooper 1994 from a rather similar wind structure claims

instead 〈Lcal〉 ≈ 10Lobs! However, this result seems to be due

to the inadequate assumption that stationary, radiative cooling

zones should build up behind the strong shocks found in an

isothermal wind simulation, where the X-ray emission is then

calculated from the known properties of such radiative shocks.

Especially, since their cooling length scales inversely with the
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Fig. 8. Upper panel, error bars: ROSAT PSPC spectrum of ζ Ori.

Full line: calculated X-ray spectrum from the wind structure of Fig.

7; dashed line: best isothermal fit to the data. Lower panel: number of

photons incident on the detector for the wind structure from Fig. 7 (full

line) and the best fit to the data (dashed line). The two panels differ by

the detector response matrix.

preshock density, the low X-ray emissivity (∼ ρ2) of a tenuous

gas is partially compensated by the corresponding cooling zone

being very extended. However, the rarefied gas in front of reverse

shocks from hydrodynamic simulations implies cooling lengths

of order (10 to) 100 R∗, i.e., meaningless volume filling factors

� 1 for the typical shock separations of order 1 R∗.

The solution to the above paradoxical situation (i.e., suffi-

cient instead of too few X-ray emission from a wind structure

with mostly thin, hot gas) comes from Fig. 9, which shows

the same snapshot as Fig. 7 but now with the X-ray emis-

sion nenHΛν(T ) dV (units erg/s) from the indicated numerical

grid cells of volume dV . (For our low densities of X-ray emit-

ting gas, the function Λν is practically independent of density).

We see that most X-rays stem from the single shock located

slightly above 6 R∗ (“overlooked” in the above estimate) with

gas-densities in the hot post-shock region close to and even

exceeding stationary wind densities. We shall see in the next

section that this shock is the site of a shell collision – in which

a fast shell is added to the cold, very dense edge of the shock

cooling layer – and therefore has rather different properties from

the majority of hot gas.

For the moment we notice that only a few shocks (never more

than 5; and usually only 1 or 2 dominating ones) emit almost

Fig. 9. The wind structure of Fig. 7 again, with the X-ray emitting

gas marked: from maximum to minimum size of a symbol (+, x, etc.),

the emission nenHΛν (T ) dV (in erg/s) drops by a factor of 100. The

energies corresponding to the different symbols are given at the upper

right corner, and the location of wind optical depth unity (where τ = 0

at infinity) at these energies is shown at the upper margin.

all the observable X-rays in our simulations. This bears some

resemblance to the work of MacFarlane & Cassinelli (1989),

where a single pair of strong reverse and forward shocks was

also found to be able to account for the total X-ray emission

from the B0 V star τ Sco.

While the observed and calculated spectra in Fig. 8 agree

very well at low energies, there are (at least) two reasons that this

coincidence might be fortuitous, and therefore not very signifi-

cant. (i) In this snapshot, as in most others, the soft component is

emitted from a few spatial grid cells only, i.e., the hydrodynamic

structure is certainly underresolved for this spectral domain. (ii)

The temperature of the gas which emits the soft component is

typically in the range from 5 × 105 to 106 K – and is therefore

certainly affected by our artifical change of the cooling function

below Tswi = 4.7 × 105 K.

We notice that the hard energy tail of the spectrum from the

time-dependent simulation in the bottom panel of Fig. 8 shows

a shallower decline than the best fit achieved by assuming an

isothermal gas at 106.5 K. The reason is simply the presence of

much hotter gas in the hydrodynamic simulation, and this fact

provides an alternative explanation for the possible presence

of hard X-ray components in measured spectra instead of the

inverse Compton scattering at relativistic electrons (Chen &

White 1991), cf. the Introduction.

Fig. 10 shows a greyscale rendition of the contribution func-

tion, where the latter gives the exact contribution to the total

emergent X-ray emission at energy E from gas located within

a certain radial range. We find that the emergent spectrum over
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Fig. 10. Greyscale rendition of the contribution function, which is the

ratio of emergent X-ray luminosity at energy E (abscissa), from gas

located between radii ri and ri+1 (ordinate), to the total emergent lu-

minosity at E.

the full ROSAT bandpass is indeed emitted almost single by the

shock discussed above. At energies around 0.7 keV, however,

a minor contribution of ≈ 10% stems from the gas between

12 and 14 R∗. Furthermore, we conclude from this and many

other snapshots that more than 90% of the observed X-rays in

our models are emitted from below 10 R∗, i.e., from wind re-

gions where acceleration is important.

Fig. 11 shows the location of optical depth unity in the wind

(with τ = 0 at infinity) for energies in the ROSAT spectral range.

Astonishingly, the r(τ = 1) curves are rather similar for the time-

dependent and the stationary wind model. The reason is that the

wind gas can only be compressed once into a shell and then

remains there for all subsequent times. Any wind particle can

therefore be displaced from its location in the stationary wind

by at most the intershell distance, which for radii r < 10 R∗ in

Fig. 7 is typically 1 R∗ (at most 2 or 3 R∗). The same conclusion

holds then for the location of optical depth unity.

Finally, Fig. 12 shows a two-dimensional cut through the

emitting and absorbing wind gas. The emitting volumes, as seen

by an observer at r = ∞, are concentric cylindrical tubes (spher-

ical symmetry is assumed), the terminating surfaces of which

(at τ ≈ 1) are sections through spheres (at least if the τ = 1

surface lies within a dense shell, which is mostly the case). The

reason for the discontinuous jumps of the τ = 1 surfaces at cer-

tain values of p is that the optical depth of a shell grows with

increasing line of sight angle between z and r, and thus with p.

3.3. Photospheric turbulence as wind perturbation

We repeat in short the discussion from the last section for the

model assuming photospheric Langevin turbulence with maxi-

mum amplitudeAM = 0.2 as the triggering perturbation. Fig. 13

shows a snapshot of the wind at 3 d after model start. The most

Fig. 11. Location of optical depth unity in the wind, for X-rays in the

ROSAT energy range. Full line: time-dependent wind model of Fig. 7.

Dashed line: stationary wind model. Three dominant K-shell edges are

marked at the bottom margin.

dominant – reverse – shock occurs slightly above 4 R∗ here.

Shock destruction sets in at ≈ 5 R∗ again, and beyond this ra-

dius most hot gas is leftover from former shocks only. However,

exceptional reverse shocks are also found at very large distances

20 and 27 R∗. Forward shocks with temperatures of order 106 K

occur at the edges of cold and hot gas at 12 and 15 R∗.

The X-ray emission from the wind structure in Fig. 14 shows

again good agreement with the soft and hard regions of the

ROSAT spectrum. The maximum deficiency, around 0.7 keV,

is by a factor of 4. As before, the hard energy tail of the incident

detector spectrum has a shallower decline than the empirical fit

using an isothermal emission model with Tshock = 106.5 K.

Fig. 15 leads to the same conclusion as was reached in the

last section: almost all the emergent X-rays originate from a

single, strong reverse shock (of velocity jump 2200 km/s here,

and located at <∼ 4.5 R∗), where the density of the hot, emitting

gas is close to and even larger than in a stationary wind. A

further contribution at the 10% level (cf. Fig. 16) stems from

the outer rim (at >∼ 7 R∗) of a broad region of hot intershell

gas. As will become clearer in the next section, a shell collision

with subsequent shock destruction has just occured at this latter

site. Finally, we note that the hot gas seen in the figure below

3 R∗ does not contribute significantly to the emergent X-ray

radiation, since it is located below the radius where τ = 1 for

the corresponding energies.

4. Shell collisions as origin of X-ray emission

To understand the origin of gas heating which leads to X-ray

emission, we show in Fig. 17 a greyscale rendition of the wind
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Fig. 12. The (p, z)-geometry of X-ray radiative transfer for the wind

structure from Fig. 7. The observer is located at (z = ∞, p = 0). The

plus signs, connected by full lines, show the surfaces of optical depth

unity at the energies indicated (in keV). The shaded regions show gas

hotter than 106 K. The narrow, black regions are dense shells where

the density is higher than three times the local density of the stationary

wind.

evolution from 3.2 to 4.6 days after model start, with the tunable

sound wave as the triggering perturbation. The strong emission

at t = 3.5 days and r >∼ 6 R∗ in Fig. 9 is now seen to be due to a

shell collision. Even more than that, from the density diagram of

Fig. 17 it is clear that significant X-ray emission stems only from

sites of shell collisions. (The conclusion in the other direction,

however, is not true: not every shell collision is the origin of

significant X-ray emission.)

We notice from this figure that the snapshot at t = 3.5 days

appears to be exceptional. While other shell collisions lead to

short flashes of X-ray emission (of duration≈ 500 s; see below),

X-rays are generated here over almost 2.5 hours. The reason is

that several tiny shells are fed into an outer, pronounced shell,

which is then the site of strong emission. Furthermore, we notice

that the strongest shell collisions in the figure lead to X-ray

flashes still a factor of 10 more intense.

The temperature diagram in Fig. 17 shows a sudden expan-

sion of the cooling zone after each strong shell collision. This is

the process of shock destruction (Feldmeier 1995). However, in

the latter paper we claimed somewhat misleadingly that the pro-

gressive rarefication of the intershell gas being fed into the shells

causes the broadening of the cooling zones. We now see that

the process is instead initiated by an abrupt change in preshock

conditions after a shell collision: immediately after the merger,

extremely rarefied intershell gas is being fed through the shock.

Fig. 13. Snapshot of the wind structure triggered by photospheric

Langevin turbulence at three days after model start.

This causes radiative cooling to cease and the shock to be pushed

into the preshock gas.

The large number of shell collisions in our simulations can

be traced back to the existence of two rather different shell pop-

ulations: (1) very dense shells which move almost according to a

stationary wind velocity law. (The fact that most of the gas mass

in a time-dependent wind still follows a stationary velocity law

was noticed by Owocki et al. 1988, cf. their Fig. 10; see also

Puls et al. 1993, Fig. 2); and (2) fast “mini”shells with a density

close to stationary values. As is obvious from Fig. 17, in al-

most all cases the X-ray flash occurs when a fast minishell rams

into an outer, pronounced shell. – The formation of pronounced

shells can be followed back almost into the photosphere, and

corresponds to the largest perturbations which occur there. The

momentum the shells gain from faster, inner gas which runs into

them (through a reverse shock) is used up again by the shells

overtaking and sweeping up dense gas ahead of them (eventu-

ally through a forward shock): the shells become fat, not fast.

However, with the intershell gas being gradually swept up, ul-

timately (from about 1.2 R∗ on) the remaining gas ahead of

the forward shock of a shell can be accelerated (the line-driven

instability at work!) all the way through the broad and empty

intershell region, i.e., the momentum is now in a small-mass,

high-velocity blob.

Fig. 18 shows a time sequence of the shell collision around

r = 4.2 R∗ and t = 3.64 d from Fig. 17. We have chosen this in-

stant since it gives a somewhat clearer picture than the multiple

collision with very tiny shells at 3.5 days. (We note in pass-

ing that two interesting snapshots of a shell collision, however
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Fig. 14. Upper panel: ROSAT observed spectrum and spectrum for

the Langevin model from Fig. 13. Lower panel: number of photons

incident on the detector.

discussed in the framework of X-ray variability due to shock

merging, can be found in Cooper 1994, Fig. 6.9). – The se-

quence is shown in the frame of a particle which moves through

a stationary wind with aβ = 0.8 velocity law, where this particle

is initially located at the position of the shell marked A. Since

the comoving frame coordinate of this shell remains close to 0

during the time series, we see that this shell is actually moving

roughly according to a β = 0.8 law. During the first five snap-

shots of Fig. 18, the fast shell A’ drives the shock front B ahead of

it, thereby compressing the cooling zone spanned by A and B. At

3.62 days, A’ has merged with A. The kinetic energy of relative

motion is thermalized during this inelastic collision, and for a

short moment both prerequisites necessary for significant X-ray

emission are met: the gas has a high density and a high temper-

ature. From the figure one finds a relative motion of A and A’ of

≈ 700 km/s, which corresponds to a temperature of ≈ 107 K

when thermalized. The length scale of this hot and dense region

is that of the radiative shock through which the shell A’ is added

to A. Due to the high density, radiative cooling is efficient and

the cooling zone behind the shock is very thin. Shortly after A’,

a similar shell A” (of relative velocity≈ 800 km/s) merges with

A, which leads to a stronger X-ray emission at t = 3.64 d than

the previous merger at t = 3.62 d. However, this difference is

simply due to the coarse temporal resolution of the sequence.

Finally, the last three snapshots of Fig. 18 show that extremely

rarefied intershell gas is passing through the shock front; radia-

Fig. 15. The Langevin model from Fig. 13, with X-ray emitting gas

marked. The symbols are as in Fig. 9.

Fig. 16. Contribution function for the Langevin model, cf. Fig. 10.

tive cooling ceases therefore and the shock is pushed into the

preshock gas, which ultimately leads to the destruction of the

shock.

The duration of such a strong shell collision can be estimated

as follows. The thickness of a minishell is the radial extent of

swept-up gas – which is a substantial fraction of the intershell

distance, i.e., a few times 0.1 R∗ – divided by the compres-

sion factor, i.e., the Mach number squared at the reverse shock,

where Ma = 20 is a typical value in our models. For a relative

velocity of 800 km/s between minishell and pronounced shell,

the collision time is then of order 10 seconds. Yet, the collision

time in our simulations is much longer since we cannot resolve
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Fig. 17. Greyscale rendition of the evolu-

tion of wind density and temperature, with

structure formation triggered by a tunable

photospheric sound wave. The snapshot of

Fig. 7 is taken from this sequence at time

3.5 d. The density is in units of its sta-

tionary value, and the coding of the sym-

bols (crosses, squares, etc.) which indicate

X-ray emission,nenHΛν (T ) dV , is identical

to that in Fig. 9.

the minishells on such tiny length scales, but instead they are

smeared out over ≈ 5 grid zones, which gives a collision time

of ≈ 500 seconds. However, the amount of heat generated, and

therefore of X-rays emitted in the collision depends only on

the total mass that is stopped, and should therefore be correctly

estimated in our simulations.

We notice that, if the mechanism proposed here is indeed

dominant, then the X-ray emission from hot star winds is a true

multiscale problem: the total dynamical range of the wind is re-

solved numerically by <∼ 104 grid points; individual wind struc-

tures (rarefaction regions between subsequent shells, which pos-

sibly collide at later times) by <∼ 103 grid points; radiative cool-

ing zones behind strong shocks – which in Feldmeier et al.

(1996) were already defined as being of “microscopic” length

scale – by <∼ 102 points; and the sites of heating during a shell

collision – which in the present paper are identified as origin of

strong X-ray emission – by <∼ 10 points.

We close this section by considering the energy cascade in

the wind from working rate of radiative forces to shock dissi-

pation rate to X-ray emission rate. The first column in Table

2 specifies these numbers for the Lucy & White (1980) blob

model, and the second column is an update (White & Chen

1994) for the Lucy (1982) forward shock model. The remain-

ing columns are for the present time-dependent model, i.e., for

the snapshots at 3.5 and 3 days of the wind perturbed by sound

waves and by Langevin turbulence, respectively.

Here, the individual shocks in the models were examined

to find the ratio of wind kinetic energy dissipated in the fronts.

The ’efficiency’ ratio, η, of heat radiated into X-rays in the

ROSAT energy range, η = LX,emit/Lshock, is determined from

the constraint that the product of the first four rows in the table

gives the ratio LX,emerg/Lbol in the fifth row. For temperatures

in the range 106.7 to 108 Kelvin, η > 0.5 should hold if most

of the dissipated energy is radiated away – i.e., if wind heating

plays no major role, as is the case in our models.

To gain a clearer view of the energetics of shell collisions,

in addition to the snapshots from the last section (column ’total’

in the table) we also examined the case when X-ray emission
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Table 2. The energy cascade in the wind.

Lucy & White White & Chen sound wave Langevin turb.

(1980) (1994) total no coll. total no coll.

Lwind

Lbol
3.5 · 10−3 10−2 1.7 · 10−3 . . . . . . . . .

Lshock

Lwind
0.1 10−2 2 · 10−2 10−4 2 · 10−2 10−4

LX,emit

Lshock
0.1 1 5 · 10−2 0.4 3 · 10−2 1

LX,emerg

LX,emit
2 · 10−3 10−3 0.16 0.31 0.15 0.19

LX,emerg

Lbol
7 · 10−8 10−7 2.8 · 10−7 2.3 · 10−8 1.7 · 10−7 3.3 · 10−8

Lmodel
X,emerg

Lobs
X,emerg

1.3 1 1.1 0.09 0.7 0.13

from collisions is artificially suppressed by setting the gas tem-

perature at these sites to Teff (column ’no coll.’ in the table).

For the latter case, the steady shocks indeed emit almost all the

dissipated energy (which is a fraction 10−4 of Lwind = 1
2
Ṁv2

∞)

into X-rays, η <∼ 1. (η = 0.4 for the sound wave model indi-

cates that we did not succeed in flagging all collision sites, cf.

below.) Yet, the emergent X-ray flux lies a factor of 10 below

the observed flux. Including the shell collisions then gives an

enhancement of the ratio of wind kinetic energy transformed

into heat by a factor of 200. However, the efficiency η drops

by a factor of roughly 10, so that now the emitted X-ray flux

matches the observed one.

The reason for the reduced efficiency is the following. The

dense, narrow shells of gas which pass through some of the

fronts at these selected instants are rare events, and lead to a mo-

mentary dissipation rate (and X-ray emissivity) which is much

larger than the true, long-time average. In contrast to a steady

shock, the gas conditions in the vicinity of a collision site al-

ready imply a much lower dissipation rate and X-ray emission.

On the other hand, the X-ray emission as calculated from the

snapshot reflects the history of gas heating. The reduction in ef-

ficiency reflects then the ratio of the duration of shell collisions

(roughly 500 s) to the time interval between them (a few hours).

Our overall efficiency of transfering wind kinetic energy

into X-rays is more than one decade smaller than in the models

of Lucy & White (1980) and Lucy (1982). This is compensated

by the lower X-ray absorption in our model. However, this may

point to possible difficulties of the present approach to generate

sufficient X-ray flux when (much) denser winds are considered.

5. X-ray variability

Since the shell collisions in Fig. 17 occur on a short timescale,

and since only a few collisions occur at a given time, the X-ray

emission from the wind is highly variable. Fig. 19 shows the

X-ray luminosity in the ROSAT band for our four models (two

different base amplitudes for each the photospheric sound wave

and Langevin turbulence model) together with a fifth model

which serves as a numerical test case. The latter has a refined grid

in deep wind layers so that filtering of short-scale photospheric

waves is reduced. Except for this difference, it is identical to the

Langevin model with small base perturbation amplitude. No

systematic offset is seen from the figure to occur between these

two models, which implies that those photospheric pertubations

that are important for the X-ray emission can indeed propagate

out into the wind. – Two facts are apparent from the figure (and

will be quantified below in Fig. 21):

(1) The average X-ray luminosity from the models is only a

factor of two to three below the observed value. We feel this to

be strong evidence that shell collisions may indeed be efficient

enough to generate the X-ray emission from hot star winds. This

especially in light of two numerical uncertainties, which both

should lead to an underestimate of the X-ray flux: first, the res-

olution problem of radiative cooling zones (cf. Sect. 2.1) leads

to a direct loss of hot gas; and second, the cutoff parameter κm

(Owocki et al. 1988), which is introduced to make the radia-

tive instability numerically manageable, causes artificial radial

stretching of the wind structure, and thereby probably leads to

a reduced collision rate along a wind ray.

(2) The Lx(t) distributions of all five models appear to be

quite similar. Due to the different perturbation mechanisms ap-

plied (sound wave vs. turbulence) this means that our results

for the X-ray emission should be robust – even with individual

shell collisions being rather delicate processes.

The minimum Lx in the figure corresponds to the emission

from individual radiative shocks and leftover hot gas, but with

no shell-collisions taking place: notice that this minimum lies a

factor of ≈ 30 below the observed Lx, as was also estimated in

Sect. 3.2 to be the contribution from shocks and old hot gas to

the emission. This shows that shell collisions can lead to an X-

ray emission which is on average one order of magnitude larger

than the emission from individual shocks and leftover hot gas.

The question arises whether the Lx at successive instants in

Fig. 19 are statistically dependent or independent. The sampling
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Fig. 18. Time sequence of the shell collision at r = 4.2 R∗ and

t = 3.64 days from Fig. 17. The left panel shows the density (full

line) and temperature (dashed line), the right panel the velocity; axes

are indicated for the panel bottom. An outer, pronounced shell, A, and

two small, inner shells, A’ and A”, are marked. B is the reverse shock of

shell A. The spatial coordinate is in the frame of a particle which moves

according to a β = 0.8 velocity law, and which is initially located at

the position of shell A.

time is 6 hours in this plot, i.e., much longer than the interval

over which an individual shell collision takes place (about 500

seconds), and also longer than the correlation time of photo-

spheric perturbations, which is between 103 and 104 seconds.

Indeed, at a few instants changes in Lx as large as a factor of

100 are found in Fig. 19 within one sampling time. Therefore,

subsequent Lx are – to a large degree – independent. However,

there are one, possibly two long-time trends seen in this dia-

gram: (i) up to 4 days, the Lx distribution is narrower than at

later times. This is interpreted to be due to the presence of ini-

tial transients, i.e., the wind has not yet settled to its limit cycle.

(ii) After 4 days, it seems that the width of the Lx distribution

grows monotonically with time. However, this is possibly an

effect of small sample size in that rare events – i.e., very high

or low luminosities – only show up after long time intervals.

One may ask whether it would not be more appropriate to

compare time-averaged, synthesised X-ray spectra instead of

snapshots with the ROSAT data. While the computational effort

in doing so would be high, our results should be rather insen-

sitive to such averaging – at least for the most interesting time

Fig. 19. X-ray luminosity in the ROSAT energy band vs. time, for five

numerical wind simulations with different types of base perturbation

(triangles: sound wave – circles: Langevin turbulence), and different

perturbation amplitudes (open symbols: small – filled symbols: large

amplitude). Circles with a dot in the center are for a Langevin test model

with very fine grid resolution (this model only up to 4.5 days). The

dotted line at Lx = 4.9 × 1032 erg/s is the emergent X-ray luminosity

deduced for ζ Ori from a one-temperature fit to the ROSAT data.

intervals of 1000 s, which correspond to typical single ROSAT

observations – for essentially two reasons. (1) From a few tests

we find that Lx values close to the center of the distributions

in Fig. 19 vary only by ±20% over 1000 seconds. (2) The total

width of the Lx distributions should also be almost invariant,

since: (i) the minimum Lx is due to frequent radiative shocks

and leftover hot gas; and (ii) the maximum Lx is due to strong

shell collisions of duration ≈ 500 seconds and ≈ 5 hours apart,

i.e., this maximum should already be sampled in Fig. 19, and

should remain approximately the same under 1000 s averaging.

The temporal average (from 4 to 10 days after model start)

of the calculated X-ray spectra is shown in the upper panel of

Fig. 20. All four models give, on average, about the correct

flux of soft X-rays from 0.1 to 0.4 keV. The largest deviations,

by an average factor of ≈ 5, occur for all models between 0.6

and 1 keV. For hard X-rays above 1 keV then, the models pre-

dict a flux roughly a factor of 2 or 3 below the observed flux.

Furthermore, while the average count rate for the sound wave

model with strong base perturbation amplitude (0.5) is, over the

whole energy range, almost twice as large as for the small am-

plitude (0.3) model, the count rate for the turbulence model with

small amplitude (0.2) is approximately equal to that with large

amplitude (0.5) – actually even somewhat larger! Only for the

latter Langevin models we can therefore conclude that unstable

growth has saturated at a level independent of the base pertur-

bation amplitude before the X-ray emitting region is reached,

whereas for the sound wave model the emission (still) scales

with the amplitude. The lower panel of the figure shows the

ranges spanned by the X-ray spectra during these 6 days. No

major systematic offsets between the models are found except

for the above mentioned factor of two, and except for an en-

hanced flux at hard X-rays of the sound wave model with large
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Fig. 20. Temporal variability of the calculated spectra from 4 to 10

days. Upper panel: temporal averages of the observed to calculated

count rates. Lower panel: total range of count rates spanned by the

different models.

Fig. 21. Distribution function for the Langevin and sound wave model

between 4 and 10 days, where “events” refer to Fig. 19. The numbers

at top of the panels are the mean value, the standard deviation, and the

skewness of the distributions, respectively.

perturbation amplitude. However, the latter hump is spanned up

by two snapshots only, i.e., by very sparse events.

We reach the critical test of the present model of X-ray emis-

sion. Except for the episodic rise in September 1992, Berghöfer

& Schmitt (1994a) found the absolute variations in the X-ray

count rate of ζ Ori to be well below 10%. In stark contrast, we

find a variability over 2.5 decades in the X-ray luminosity. – We

propose, as an outlook to future calculations, that the observed

stationarity of the X-ray emission is achieved via a lateral frag-

mentation of the emitting and absorbing shells into clouds or

clumps, so that fluctuations along individual wind rays average

out over the whole emitting volume. This assumption is consis-

tent with our use of stochastic photospheric base perturbations,

for which horizontal coherence lengths should be small. (For a

typical coherence time tc = 5000 s in our models, the stellar

surface could consist of >∼ 105 patches.) Furthermore, as shown

by Rybicki et al. (1990), horizontal velocity fluctuations will be

strongly damped due to the line-drag effect (Lucy 1984), hence

the line-driven instability should not mix gas from wind rays

originating in different photospheric conditions. If, finally, hori-

zontal mixing due to the Rayleigh-Taylor and Kelvin-Helmholtz

instabilities (cf. Chandrasekhar 1961) is negligible, and if also

the stellar rotation speed is low, we can roughly interpret the

temporal snapshots of Fig. 19 as corresponding to the emission

from different radial cones of small opening angle at one single

time. To get a quantitative estimate for the required fragmen-

tation then, we argue as follows. We neglect X-ray absorption

in the wind (which is not too bad an approximation for ζ Ori);

this reduces the radiative “transfer” to a linear problem, one of

adding up the emission from individual cones. We assume fur-

ther that each emitting cone has the same opening angle (i.e.,

base area), and that the temporal mean and standard deviation

of Lx is the same for all cones. From Fig. 21 we find that the

mean of the calculated logLx distribution is 32.3, with standard

deviations σ(logLx,cal) = 0.4 and 0.6 for the sound wave and

Langevin models, respectively. Identifying the maximum abso-

lute changes of ≤ 7% found by Berghöfer & Schmitt (1994a)

with a three sigma interval, we have σ(logLx,obs) = 0.01. Since

σ drops with the square root of the number of emitting cones,

a few thousand independent radial cones would ensure the ob-

served flux constancy.

6. Summary and future work

Our one-dimensional, hydrodynamic model of an O supergiant

wind which is subject to the line-driven instability showed that

the crash of small, fast blobs into massive, slow blobs can re-

lease an X-ray flux which almost matches the observed one.

(On the other hand, the X-ray spectral shape gives only minor

constraints on any model building attempt at this more princi-

pal stage – as was also noticed by Cassinelli & Swank 1983,

MacFarlane & Cassinelli 1989, and Cooper & Owocki 1994.)

A number of questions were raised during this study, which

give the directions for future, more quantitative work.

1. A 3-D Monte Carlo approach is needed for the X-ray

transfer which allows patching of the full solid angle into emit-

ting and absorbing wind cones – to study how X-ray flux con-

stancy is achieved via volume averaging. On the other hand a

larger number of radial shell collisions, and a corresponding

reduction in the flux variability could also be achieved by us-

ing larger, i.e., more natural values of the cutoff parameter κm

together with shorter perturbation periods. However, methods

have to be developed first to handle the steep intershell velocity

field that results from increasing κm.

2. A systematic study is needed over the full range of spectral

types O3 to O9 and luminosity classes I to V to find which

relation(s) our models predict between Lx and Lbol – and other

stellar parameters, possibly. The fundamental relation Lx ≈
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10−7Lbol – with no wind quantity entering – remains astonishing

for wind-embedded X-ray sources.

3. A detailed investigation of the dynamics of blob-blob col-

lisions is needed, together with a method to achieve better spatial

resolution of the blobs and therefore of the collision process in

a full hydrodynamic simulation. An interesting question in this

context is raised by the finding (Feldmeier et al. 1996) that fits to

ROSAT spectra which assume radiative shocks as fundamental

emitting entities are superior to fits which assume isothermal

hot gas. How does this translate to the present finding that blob-

blob collisions are the strongest sites of X-ray emission? Can

we identify the radiative shocks from the above fits with the

radiative shocks through which small, fast blobs coalesce with

pronounced, slow blobs?
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Berghöfer T.W., Schmitt J.H.M.M., 1994b, Sci 265, 1689
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Abstract. Line-driven winds, e.g., of OB stars, are subject to

a strong hydrodynamic instability. As a corollary to the com-

prehensive linear stability analysis performed by Owocki &

Rybicki (1984), we present here a simplified derivation of the

growth rates from applying a second order Sobolev approxima-

tion. This is applicable for perturbation wavelengths larger than

the Sobolev length, and covers the physically most interesting

regime of perturbations which can develop into strong reverse

shocks, and heat the gas to X-ray temperatures. Since the usual

WKB approximation is not applied, we furthermore find the ex-

istence of a limiting wavelength beyond which perturbances do

not grow, but instead decay.

Key words: stars: early-type – hydrodynamics – instabilities –

shock waves

1. Introduction

Lucy & Solomon (1970) noticed the existence of a new hy-

drodynamic instability for line-driven winds, which resembles

the runaway mechanism described by Milne (1926) for static

atmospheres.

MacGregor et al. (1979) and Carlberg (1980) derived the

linear growth rates of this so-called line-driven instability by as-

suming flow perturbations are optically thin. Contrary to their

results, Abbott (1980) found that growth rates of long-scale

perturbations, for which the Sobolev approximation could be

applied, are zero. Owocki & Rybicki (1984; OR in the follow-

ing) ’bridged’ these opposing results by showing that harmonic

perturbations of wavelength λ shorter than one third to one half

the Sobolev length, L = vth/v
′ (primes indicate spatial dif-

ferentiation), are highly unstable at the constant rate given by

MacGregor et al. (1979) and Carlberg (1980); for λ > L, on

the other hand, the growth rate drops as λ−2, implying marginal

stability for λ → ∞.

Subsequent analytic work on the instability was concerned

with: (1) the influence of scattering, e.g., flow stabilization due

to line drag (Lucy 1984; Owocki & Rybicki 1985); (2) growth

Send offprint requests to: feld@usm.uni-muenchen.de

rates for non-radial velocity perturbations (Rybicki et al. 1990);

and (3) growth rates for flows with optically thick continuum

(Owocki & Rybicki 1991; Gayley & Owocki 1995).

Numerical wind simulations by Owocki et al. (1988) and

Owocki (1991) showed the occurence of broad rarefaction re-

gions over which the gas is highly accelerated, and is eventually

decelerated again in a strong reverse shock, which heats the gas

to X-ray temperatures. Subsequent radiative cooling compresses

this gas into dense and narrow clouds. The idea that such clouds

should correspond to the observed discrete absorption features

in P Cygni profiles is meanwhile mostly ruled out (cf. Puls et

al. 1993; Cranmer & Owocki 1996; and the volume edited by

Moffat et al. 1994). On the other hand, after some initial diffi-

culties (Cooper & Owocki 1992, 1994), it seems now plausible

(Feldmeier et al. 1997) that the observed X-ray emission from O

stars (cf. Hillier et al. 1993, and references therein) stems from

instability-generated shocks.

The present paper returns to the issue of linear stability anal-

ysis, with a twofold aim: (1) to present an easy and straightfor-

ward derivation of growth rates, which, for the physically most

interesting regime of moderate long-scale perturbations, com-

plements the more elaborate analyses of OR and Lucy (1984);

and (2) to show how the second order Sobolev approximation

implies an unstable growth of inward propagating radiative-

acoustic waves, where the latter were firstly described by Abbott

(1980) and result already from a first order Sobolev treatment.

A related second order expansion was already performed

earlier by Owocki (1991, priv. comm.) to show that the line

force in (first order) Sobolev approximation is to one order in

L more accurate for pure scattering lines than for pure absorp-

tion lines. The aim of this investigation was to explain certain

difficulties which are encountered when one tries to reproduce

the stationary wind solutions of Castor et al. (1975; CAK in the

following) and Pauldrach et al. (1986) – which both apply first

order Sobolev approximation – by using instead the exact line

force for the case of pure line absorption (Owocki et al. 1988;

Poe et al. 1990). In another context, the second order Sobolev

approximation was also considered by Sellmaier et al. (1993).

Notice that the derivation given below is for pure absorption

lines in a purely radial flow from a point source of radiation.

According to Lucy (1984) and Rybicki et al. (1990), the growth

rates are then maximum ones.
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2. Instability from second order Sobolev approximation

The reason that Abbott (1980) found no indication of wind insta-

bility is that he used the Sobolev approximation in lowest order,

even for the flow perturbations. E.g., consider an optically thick

line, with line force per unit mass gT ∼ v′/ρ (Sobolev 1960;

Castor 1974). By assuming harmonic perturbations, this implies

a phase shift of 90o between velocity perturbations, δv, and the

response of the line force, δg. Hence, the line force does no

net work on the velocity perturbation over a full cycle, and the

perturbation does not grow (OR).

To see how the instability arises, we consider at first the

expression for the exact line force, before the Sobolev approx-

imation is applied. Let x̃ be the frequency displacement from

line center, νl, in Doppler units, ∆νD = νlvth/c (vth the ionic

thermal speed, c the speed of light), as measured in the observers

frame. For radially directed photons, the force per unit mass due

to photon absorption in a single line is,

gl(r) = gt(r)

∞
∫

−∞

dx̃ φ

(

x̃−
v(r)

vth

)

e−τ (x̃,r). (1)

gt is the force due to an optically thin line, with κ the mass ab-

sorption coefficient, and Fν the stellar flux at the line frequency,

gt =
κ∆νD Fν

c
, (2)

and the radial optical depth is

τ (x̃, r) =

r
∫

R∗

dr′ κ(r′)ρ(r′)φ

(

x̃−
v(r′)

vth

)

, (3)

with R∗ the stellar radius. In first order Sobolev approximation,

κ, ρ, and dv/dr are assumed to be constant over the narrow

region, i.e., the Sobolev zone, over which photons of given fre-

quency can be absorbed in the line transition. This implies

gl = gt
1 − e−τ1

τ1

, (4)

where

τ1(r) = κ(r) ρ(r) vth/v
′(r). (5)

Introducing then a velocity perturbation, δv, into (1) and (3)

leads to a rather complex expression. To allow a further progress,

MacGregor et al. (1979) and Carlberg (1980) assumed that the

exponential term is not affected by the perturbation, i.e., the

perturbation is optically thin.

As will be discussed in Sect. 4, the velocity jumps which are

caused by the corresponding short-scale perturbations are rather

small, namely of order the thermal speed, and cannot explain,

e.g., the observed X-ray emission from OB stars.

We are therefore primarily interested in long-scale perturba-

tions, which, despite of their reduced growth rates (cf. below),

can still grow into saturation and give rise to large velocity, tem-

perature, and also density jumps. Notice that δτ ≈ 0 can then no

longer be assumed. However, as will be shown in the following,

the growth rates are then easily derived from applying a second

order Sobolev approximation.

The bridging length where this long-scale limit breaks

down, and the λ−2 increase of the growth rate bends over to

the constant, maximum rate given by Carlberg (1980), is set

by the Sobolev length. This can be seen from the fact that the

first order Sobolev approximation does not lead to an instability

(Abbott 1980), while the second order approach leads to the

correct growth rates for long-scale perturbations. The second

order approximation differs from the first order one by terms in

L.

2.1. Optical depth in second order Sobolev approximation

Let x be the frequency displacement in the comoving frame,

x = x̃−
v(r)

vth

, (6)

and assume small perturbations, so that the wind velocity field

remains monotonic. Then (3) can be transformed to a frequency

integral,

τ (x, r) = κ vth

∫

∞

x

dy
ρ

v′
[s(y)] φ(y), (7)

where the integration variable is defined as y = x̃ − v(s)/vth.

As before, κ is assumed to be constant over the Sobolev zone,

which is a reasonable assumption for resonance lines and tran-

sitions from metastable levels, both dominating the line force.

Performing a Taylor series expansion of ρ/v′ to first order (and

abbreviating ρr ≡ ρ(r), etc.),

ρs
v′s

=
ρr
v′r

[

1 +

(

ρ′r
ρr

−
v′′r
v′r

)

(s− r)

]

. (8)

From (6), and again to first order,

s− r = −
vth

v′r
(y − x). (9)

We consider now only the Doppler core of the line, where

de-shadowing effects are most pronounced, and therefore the

growth rates are largest (OR). With Φ(x) ≡
∫

∞

x
dy φ(y), and

since xφ(x) = − 1
2
φ′(x) for a Doppler profile, the optical depth

in second order Sobolev approximation is,

τ2(x, r) = τ1(r)

[

Φ(x) −
vth

2v′r

(

ρ′r
ρr

−
v′′r
v′r

)

(

φ(x) − 2xΦ(x)
)

]

.

(10)

Remember that τ1(x, r) = τ1(r) Φ(x) is the optical depth from

a first order treatment.

The divergence of the expression 2xΦ(x) in (10) for x →
−∞ is an extrapolation artefact of the linear expansions per-

formed in (8) and (9), and is compensated for by higher order

terms in the Taylor series. In any case, this term enters the force
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response δg only via the combination 2xΦ(x)φ(x), which van-

ishes for x → −∞ (see below).

We separate v and ρ into their stationary components (sub-

script ’0’) plus a harmonic perturbation,

v(r, t) = v0(r) + δv exp

[

i

(

k∗
v∗

v0(r)
r − ωt

)]

,

ρ(r, t) = ρ0(r) + δρ exp

[

i

(

k∗
v∗

v0(r)
r − ωt

)]

. (11)

Here, δv and k are assumed to be real, while δρ and ω are

complex to allow for arbitrary phase shifts between velocity and

density perturbations, and for unstable growth, respectively. The

expression k∗v∗r/v0(r), where asterisks refer to an arbitrary,

however fixed location in the stellar rest frame, accounts for

the stretching of perturbations in the accelerating velocity field

v0 (i.e., λ/v0 is independent of radius). For perturbations which

originate in the photosphere, e.g., one could choose v∗ = v(R∗).

Note that if the sound speed is small compared to any other speed

(flow speed and wave speeds), pressure forces can be neglected,

and the above expression for wave stretching is exact.

Inserting (11) into (10), and keeping only terms linear in δv
and δρ, gives

δτ2(x, r)

τ1(r)
=

δρ

ρ0

[

Φ(x) −
vth

2v0

(

iχ− q
)(

φ(x) − 2xΦ(x)
)

]

−

−
δv

v0

[

Φ(x) −
vth

2v0

(

iχ− 4 − qt
)(

φ(x) − 2xΦ(x)
)

]

iχ.

(12)

Here, δτ2 is given modulo the exponential terms from (11), and

the dimensionless wavenumber χ is defined as

χ = k∗v∗
v0 − rv′0
v0v′0

. (13)

Since we will concentrate mostly on the case rv′0 � v0, i.e., the

outer wind, we can approximate

χ ≈
v0

v′0
k =

v0

vth

Lk. (14)

Finally, we introduced in (12),

q =
v0v

′′

0

v′0
2

= −(4r − 3),

t =
3v0 − 2rv′0
v0 − rv′0

=
3r − 4

r − 3/2
, (15)

where r = r/R∗, and the second equalities hold for the CAK ve-

locity law for a wind from a point source, v0(r) = v∞
√

1 − r−1,

with terminal wind speed v∞.

2.2. The perturbed line force

Introducing the comoving frame frequency, x, in (1), and ap-

plying a small perturbation δτ (x, r), gives

δgl(r) = −gt(r)

∞
∫

−∞

dxφ(x) e−τ (x,r) δτ (x, r). (16)

To avoid tedious expressions, we set τ = τ1 in the exponential.

Inserting also δτ = δτ2 from (12) we find, for optically thick

lines (subscript ’T ’),

δgT
gT

= −
[

1 − ε(iχ− q)
] δρ

ρ0

+ iχ
[

1 − ε(iχ− 4 − qt)
] δv

v0

.

(17)

Note that actually we assumed τ � 1 here; as above, δgT is

to be understood modulo the exponential terms. The (small)

number ε is defined as

ε =
vth

2v0(r)
E(τ ), (18)

where

E(τ ) = τ 2

∫

∞

−∞

dxφ(x) [φ(x) − 2xΦ(x)] e−τΦ(x). (19)

The integralE, which is easily evaluated numerically, is of order

unity for τ � 1, and depends only weakly on τ , namely E ∼√
ln τ (Castor 1974).

The decisive fact in (17) is the occurence of a positive

feedback between velocity and force perturbations, δgT /gT =

εχ2δv/v0. First, note the dependence of growth rates δg/δv ∼
λ−2, in accordance with the results by OR. Moreover, also

the quantitative values agree well with those from the long-

wavelength limit of the bridging law by OR, cf. their Eq. (28).

E.g., for a line of optical depth τ = 10 we find a growth rate

which is 20% smaller than that given by OR; in view of the dif-

ferent approximations performed by them and in our derivation,

this is completely admissible.

From (18), the growth rate is almost constant for all mod-

erately optically thick lines, except for a dependence on vth

(atomic species), and the above weak dependence on τ . This

allows us to estimate the response of the total line force on

perturbations, which is needed below for the derivation of dis-

persion relations. Following CAK, we assume that the total line

force is the simple sum of individual contributions from all lines,

i.e., line overlap is neglected; and furthermore that the ratio of

the force due to all thin lines to the force from all thick lines

is (1 − α)/α, where 0 < α < 1, and typically α ≈ 2/3 for

O supergiants. Since, by Eq. (2), the force per unit mass due

to an optically thin line is not affected by perturbations, one

obtains δgL/gL = α δgT /gT . For the CAK wind in the limit

of vanishing sound speed, the total line force can be written

gL = −g/(1 −α), with g the gravitational acceleration. Hence,

the Euler equation reads v0v
′

0 = α gL, and the response of the

total line force to a perturbation is

δgL = v0v
′

0

δgT
gT

, (20)

with δgT /gT from (17).

2.3. Dispersion relation

By inserting (17) and (20) into the linearized continuity and

Euler equations for the harmonic perturbations δρ and δv in
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the stellar rest frame, and neglecting sphericity terms and gas

pressure, we obtain

(−iω/v′0 + iχ + 1)
δρ

ρ0

+ (iχ− 1)
δv

v0

= 0,

(1 − iεχ + aq)
δρ

ρ0

+ (21)

+ (−iω/v′0 + 1 + iεχ[iχ− 4 − qt])
δv

v0

= 0.

We introduce a dimensionless phase speed, ω1, and growth rate,

ω2,

ω1 =
Re(ω/v′0)

χ
, ω2 =

Im(ω/v′0)

εχ2
, (22)

and set the determinant of (21) to zero, which gives

ω2
1 − ω1(1 − 4ε) − 2ε(1 + ω2) + ε2χ2ω2(1 − ω2) − 2χ−2 +

+ εq(ω1t− t− χ−2) = 0,

ω1(2 + 2εχ2ω2 − εχ2) + εχ2(1 − ω2 + 4εω2) + 5ε +

+ εq
(

ω2εtχ
2 + 1 + t

)

= 0. (23)

The essential result from this equation system can be found

analytically, by assuming that

χ � 1, ε ≈ 0, εχ ≈ 0, (24)

and keeping terms in εχ2 (see below for a justification). This

reduces (23) to

ω2
1 − ω1 = 0,

ω1

(

2ω2 − 1 +
2

εχ2

)

+ 1 − ω2 = 0. (25)

The two solution branches correspond to fast growing waves

which propagate inward, and slowly decaying waves which

propagate outward,

ω1 = 0, ω2 = 1 (inward),

ω1 = 1, ω2 = −2/εχ2 (outward). (26)

By inserting these results into (21), and by using again (24), the

ratio of relative perturbation amplitudes is found to be

δρ/ρ0

δv/v0

= −1 (inward),

= iχ (outward). (27)

For an interpretation of this result, note that the continuity equa-

tion reads in the comoving frame and after applying the WKB

approximation (i.e., mean flow gradients neglected), dδρ/dt +

ρ0 dδv/dz = 0, or, for harmonic perturbations, δρ/ρ0 = δv/vφ,

with phase speed vφ = ω/k.

From (26), the unstable waves propagate inward at a phase

speed vφ = 0 in the observer’s frame, or vφ = −v0 in the co-

moving frame, i.e., they stand with respect to the star. Even-

tually, these waves should steepen into reverse shocks, as is

indeed found from numerical simulations. The phase shift be-

tween density and velocity fluctuations is 180o, similar to the

case of ordinary, inward propagating sound waves.

The damped waves, on the other hand, propagate outward

at a phase speed vφ = v0 in the stellar rest frame, or vφ = 0 in

the comoving frame, i.e., they stand with respect to the wind.

(In order to derive this from the amplitude relations (27), one

has to set χ−1 = 0.) By including pressure terms, Abbott (1980)

found more exactly vφ = a2/v0 in the comoving frame. Also,

the phase shift of these waves is 90o, instead of being 0o for

ordinary, outward propagating sound waves.

Abbott (1980) termed both these long-scale modes

radiative-acoustic waves.

Finally, (24) remains to be justified. By assuming ε <∼
vth/v0 ≈ 0, we are restricted to the highly supersonic, outer

wind. Then, εχ ≈ 0, since rv′0 can be neglected in χ, so that

χ ≈ v0k/v
′

0, and εχ ≈ Lk. The latter quantity is small com-

pared to unity in the considered long wavelength limit. Finally,

with χ � 1 we are restricted to perturbations for which the

WKB approximation is valid, i.e., to wavelengths shorter than

the wind scale height, v0/v
′

0.

2.4. Limiting wavelength for unstable growth

Yet, since we did not apply the WKB approximation to derive

(21), this system contains more information regarding the long

wavelength regime than does the analysis of OR. Especially, one

can derive an upper limiting wavelength, λc, above which even

inward propagating waves are no longer unstable, but decay

instead.

Assume for the moment that curvature terms of the velocity

field can be neglected, i.e., q = 0. For not too small χ, the

numerical solution of (23) shows that −ω1 � 1 for the inward

mode, and ω2
1 can be neglected in (23). With ε ≈ 0, and setting

the growth rate ω2 = 0, we find from (23),

χc =
√

2 ε−1/4. (28)

Assuming again that χ ≈ v0k/v
′

0, one finds that (as was to be

expected) the critical wavelength λc is set by the scaleheight of

the wind, v0/v
′

0. E.g., for the CAK velocity law,

λc = 2
√

2 π ε1/4 (r −R∗)
r

R∗

. (29)

Except close to the star, λc is rather large. An easy calculation

shows that, for λ <∼ λc, even the growth rates from (17) are so

small that such perturbances would not grow significantly over

a wind flow time. Hence, λc from (29) is of not much practical

interest. (Note also that for such large values of λc, one would

have to include sphericity terms in the above derivation.)

Finally, the numerical solution of (23) shows that curvature

terms, v′′0 , are rather unimportant in the outer wind, and lead to

a small downward revision of λc only. Interestingly, however,

curvature terms imply that also outward propagating waves can

become unstable within a certain wavelength regime. Yet, since

the corresponding growth rates are very small, this issue is of

academic interest only.
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Fig. 1. Left: the occurence of long-scale, inward propagating waves

in first order Sobolev approximation. Right: the line-driven instability

in second order Sobolev approximation. Upward (downward) point-

ing arrows indicate that the corresponding quantity rises (drops) as

consequence of a flow perturbation.

We close this section with a perspective. Present numerical

simulations of winds subject to the line-driven instability are

cpu-time expensive because the line force is integrated directly,

without applying any Sobolev approximation. Our above results

imply, however, that the quantitatively correct, linear growth

rates can be alternatively obtained from a second order Sobolev

treatment. It is furthermore known (Owocki et al. 1988) that

these linear rates hold over almost the full growth regime, un-

til they quickly drop to zero when saturation is reached, i.e.,

when the thermal band becomes optically thin. It seems there-

fore plausible to perform instability simulations using the cheap

Sobolev line force in second order instead of a more elaborate

line transfer.

One has to keep in mind, however, that such a method, based

on higher-order extrapolation of local conditions, does not in-

corporate the inherently nonlocal physics that occurs within the

nonlinear growth of the instability. Furthermore, in order that a

meaningful comparison with non-local integral methods, espe-

cially the Smooth Source Function method of Owocki (1991),

can be done, it may be necessary to first develop the second

order Sobolev forms for the diffuse force terms.

3. Why are radiative-acoustic waves unstable?

We give here some simple, heuristic arguments for the occurence

of unstable, radiative-acoustic waves in line-driven winds.

Assume that at some location, r, in the wind, the veloc-

ity field experiences an accidental perturbation, and becomes

slightly steeper, as is the case, e.g., at the zero crossing of a

harmonic perturbation. Since the first order Sobolev force per

unit mass due to a thick line is ∼ v′/ρ, the perturbed gas ex-

periences a larger force, and is accelerated to higher velocities.

From the left panel of Fig. 1, one sees that then the node around

which the band is tilted is shifted inward. Correspondingly, if

the velocity field becomes shallower at some node, the line force

drops, the gas is decelerated, and the node is also shifted inward.

Thus, long-scale harmonic perturbations of the velocity field, for

which the Sobolev approximation can be applied, induce inward

propagating waves.

The instability arises then from second order (curvature)

terms. The optical depth τ2 from (10) drops for a concave de-

formation (v′′0 < 0) of the thermal band, i.e., an elevation. (We

have assumed here that the ’mean’ v′ over the perturbation re-

mains constant). In consequence, the line force rises, and the

perturbed gas is accelerated to higher speeds. This enhances the

elevation, and the curvature increases further. The right panel

of Fig. 1 displays this feedback between perturbations in v and

v′′. Similarly, for a convex deformation, i.e., a trough, the line

force drops, and the trough becomes deeper.

In later stages, when fast gas starts to overtake slow gas, the

original sine-wave perturbation is transformed into a sawtooth.

Here, the gas is highly accelerated over a broad velocity eleva-

tion, and subsequently decelerated in a narrow, reverse shock

front. The corresponding kind of behavior is found for the so-

lutions of the inviscid Burgers equation, ∂u/∂t + u ∂u/∂z = 0.

4. Short-scale vs. long-scale perturbations

Carlberg (1980) pointed out that the growth of optically thin,

short-scale perturbations (OR) should saturate at small velocity

amplitudes of a few thermal speeds. By then, the perturbed gas

is essentially shifted into the unshadowed continuum, and any

further velocity shift does not provide more flux or force.

In contrast, the long-scale perturbations analysed in the pre-

vious section can grow to much larger amplitudes before they

become optically thin.

This suggests that the fast-growing, short-scale perturba-

tions can be considered as noise superimposed on the process

of a slow and coherent tilt of the thermal band over large dis-

tances, as induced by perturbations with λ � L. This view

is supported by numerical simulations of O supergiant winds

where a spectrum of base frequencies is injected into the flow

(Feldmeier et al. 1997). Here, the longest waves grow into sat-

uration, giving rise to shocks with velocity jumps of up to v∞.

Obviously, one has to ensure that the growth time of such

long-scale perturbations is still short as compared to the flow

time. For O star winds, the longest base perturbations which can

still grow into saturation give typical distances between subse-

quent, strong reverse shocks of≈ 1R∗ at distances from the star

where the wind has essentially reached its terminal speed (note:

wavelength stretching). On the other hand, optically thin per-

turbations which grow at maximum rate give structural length

scales in the outer wind of shorter than 10−2 R∗.

Furthermore, it is presently not clear whether velocity am-

plitudes are the most relevant measure of importance of the

wind structure, e.g., because only a very small amount of wind

material is actually involved in such large velocity amplitudes

(Owocki et al. 1988). Thus other measures, for example dissipa-

tion of wind kinetic energy, might be more strongly influenced

by the structure at smaller scale.

5. Summary

While unstable growth rates for both the limiting regimes of

short-scale perturbations, λ < L, and very long-scale pertur-
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bations, λ � L, were formerly discussed using simplifying

assumptions (i.e.: optically thin perturbations, resp. lowest or-

der Sobolev approximation), we have found that the physically

most interesting regime of moderate long-scale perturbations,

λ > L, which was hitherto only treated within the elaborate

analyses of OR and Lucy (1984), is also accessible to a simpli-

fied approach using second order Sobolev approximation.

While the standard, first order approach demonstrates the

existence of so-called radiative-acoustic waves, the second or-

der treatment shows the inward branch of these waves to be

unstable: accidental, positive perturbations in the velocity field

of the wind imply larger absolute curvatures; this reduces the

optical depth, raises the line force, and consequently leads to a

further acceleration.

Somewhat astonishingly therefore, the radiative-acoustic

waves according to Abbott (1980) and the line-driven instability

seem to have a similar basis, stemming respectively from first

and second-order Sobolev approximation. On the other hand,

Owocki & Rybicki (1986) showed by using a Green’s function

analysis that the true signal propagation speed in an unstable

wind which is driven by pure absorption lines is the ordinary

sound speed. Future work has to clarify this dichotomy.

Our analysis allows one to abandon the usual WKB approx-

imation, and to account for wave stretching. We hope that the

simplicity of this approach also leads to an applicability in cases

of, e.g., more complex flow geometries, as may occur in line-

driven winds from accretion disks in quasars or cataclysmic

variables.
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ABSTRACT

We analyze the dynamics of two-dimensional stationary, line-driven winds from accretion disks in
cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed
by Castor, Abbott, & Klein for O stars. Our main assumption is that wind helical streamlines lie on
straight cones. We Ðnd that the Euler equation for the disk wind has two eigenvalues, the mass-loss rate
and the Ñow-tilt angle with the disk. Both are calculated self-consistently. The wind is characterized by
two distinct regions, an outer wind launched beyond four white dwarf radii from the rotation axis and
an inner wind launched within this radius. The inner wind is very steep, up to 80¡ with the disk plane,
while the outer wind has a typical tilt of 60¡. In both cases, the wind cone dispersion is small because of
a good alignment between the wind and the radiative Ñux vectors from the disk. We, therefore, provide
an insight into the formation of the biconical geometry of disk winds as suggested by observations and
kinematical modeling. The wind collimation angle appears to be robust and depends on the disk tem-
perature stratiÐcation only. The Ñow critical points lie high above the disk for the inner wind but close
to the disk photosphere for the outer wind. Comparison with existing kinematical and dynamical models
is provided. Mass-loss rates from the disk as well as wind velocity laws are discussed in the second paper
in this series.

Subject headings : accretion, accretion disks È novae, cataclysmic variables È stars : mass loss È
stars : winds, outÑows

1. INTRODUCTION

Accretion disks are ubiquitous in astrophysical systems
ranging from newborn stars to compact objects, such as
white dwarfs, neutron stars and black holes, both stellar
and galactic. Because of their high temperatures and large
surface areas, disks appear to be among the most luminous
objects in the universe. Strong dissipative processes that
accompany accretion around compact objects can release
radiation energy in and above the disk, leading naturally to
radiation-driven winds, similar to winds from hot stars.
Observational signatures of such winds have been unam-
biguously detected in cataclysmic variables (CVs) (Heap et
al. 1978 ; Krautter et al. 1981 ; Klare et al. 1982 ; &Co� rdova
Mason 1982) and in active galactic nuclei (hereafter AGNs;
Arav, Shlosman, & Weymann 1997, and references therein),
but understanding them proved to be challenging. In this
and the following paper (Feldmeier, Shlosman, & Vitello
1999, hereafter Paper II), we focus on di†erent aspects of
disk winds in CVs, such as their two-dimensional geometry,
solution topology, mass-loss rates, and velocity proÐles.
AGN disk winds will be discussed elsewhere.

Theoretical understanding of winds from accretion disks
is hampered by their intrinsically multidimensional charac-
ter and by the richness of various physical processes supple-
menting the basic hydrodynamics of the Ñow. A number of
di†erent driving mechanisms for disk winds have been pre-
dicted and analyzed, from magnetic torques to X-ray disk
irradiation (i.e., Compton-heated and thermally driven
winds) to resonance line pressure (e.g., Blandford & Payne
1982 ; Begelman, McKee, & Shields 1983 ; &Co� rdova
Mason 1985 ; Woods et al. 1996). Disks in nonmagnetic CVs
with high accretion rates, yr~1, have an energyZ10~9 M

_
output that peaks in the (far-) ultraviolet, similarly to O, B,
and WR stars. Their spectra exhibit features which bear
similarity to those found in hot and massive stars and which

are attributed to winds driven by radiation pressure in reso-
nance and subordinate lines of abundant chemical elements,
i.e., so-called line-driven winds (LDWs). Observational evi-
dence in favor of LDWs from hot stars and disks includes
but is not limited to the P Cygni line proÐles of C IV, N V

and Si IV, ionization levels, high terminal velocities and
their correlation with the luminosity, and UV line behavior
during continuum eclipse in CVs.

The pioneering work by Lucy & Solomon (1970), Castor
(1974), and Castor, Abbott, & Klein (1975, hereafter CAK)
showed that O star winds result from scattering of radiation
in the resonance lines of abundant elements. The elegantly
formulated theory of the LDWs from O stars by CAK,
Cassinelli (1979), Abbott (1980, 1982), Pauldrach, Puls, &
Kudritzki (1986), and others (for a textbook account, see
Lamers & Cassinelli 1999) was successfully applied to indi-
vidual objects. Further reÐnements of this theory by
Owocki & Rybicki (1984, 1985) and Owocki, Castor, &
Rybicki (1988) addressed the issue of stability of the Ñow.

First application of the LDWs to accretion disks empha-
sized the nonspherical ionizing continuum and driving force
as well as a biconical geometry of the outÑow (Shlosman,
Vitello, & Shaviv 1985 ; Vitello & Shlosman 1988). Under a
broad range of conditions, disk atmospheres in CVs and
AGNs become dynamically unstable because the line
opacity e†ectively brings them into a super-Eddington
regime. Continuum photons absorbed by the UV resonance
lines and reemitted isotropically contribute to the momen-
tum transfer to the wind. This process can be described as a
resonant scattering that conserves the number of photons
throughout the wind and results in terminal wind velocities
of the order of the escape speed at the base of the Ñow.

The dynamics and radiation Ðeld of disk LDWs
employed by Shlosman et al. (1985) and by Vitello & Shlos-
man (1988) were oversimpliÐed. Both were approximated
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by a one-dimensional planar model allowing for divergence
of the Ñow streamlines and geometrical dilution of the radi-
ation Ðeld. Nineteen resonance lines in the range of 500È
1600 were included in the calculation of the radiationA�
force. It was noted that disk LDWs are more restrictive
than stellar winds and that their development is strongly
governed by the ionization structure in the wind.

Subsequently, a variety of two-dimensional kinematical
models for disk winds in CVs, supplemented by a three-
dimensional radiation transfer in the Sobolev approx-
imation, were explored (Shlosman & Vitello 1993 ; Vitello &
Shlosman 1993). Calculations using an alternative Monte
Carlo radiation transfer method, albeit with frozen-in ion-
ization, gave similar results (Knigge, Woods, & Drew 1995).
Constrained by synthetic line proÐles and by calculated
e†ects of varying basic physical parameters, such as accre-
tion and mass-loss rates, temperature of the boundary layer,
rotation, and inclination angle, the available phase space for
wind solutions was sharply reduced. Wind-resonant scat-
tering regions exhibiting a strongly biconical character
regardless of the assumed velocity and radiation Ðelds were
identiÐed and mapped. This allowed us to match the
observed line shapes from a number of CVs and to put
forward a number of predictions, which were veriÐed in
high-resolution HST observations (Shlosman, Vitello, &
Mauche 1996 ; Mauche et al. 1999). Most important, rota-
tion was positively identiÐed as the dominant factor
shaping the UV line proÐles in CVs, thus conÐrming that
the disk and not the white dwarf is the wind source.

The above one-dimensional dynamical and two-
dimensional kinematical modelings su†ered from unique-
ness problems that can be removed only by invoking the
two-dimensional wind dynamics. Recent successful
attempts by Proga, Stone, & Drew (1998 ; hereafter PSD) to
model the two-dimensional time-dependent radiation
hydrodynamics of disk LDWs was a major breakthrough in
our understanding of this phenomenon. PSD basically con-
Ðrmed that kinematical models of disk winds had sampled
the correct parameter range and provided the scaling laws
between di†erent wind characteristics, e.g., between mass-
loss rate and accretion luminosity, and delineated the phase
space for possible time-dependent solutions. A number of
empirical relationships were put forward which require a
physical explanation.

In this paper, we focus on the two-dimensional geometry
of a disk LDW in the presence of a realistic radiation Ðeld in
CVs. We analyze solutions of the wind Euler equation,
emphasizing di†erences in the solution topology with that
of CAK stellar winds. In Paper II, we address issues related
to the mass-loss rates and velocity laws of CV winds. The
possible contribution to wind driving by magnetic stresses
is ignored (e.g., Blandford & Payne 1982 ; Pudritz &
Norman 1986 ; Emmering, Blandford, & Shlosman 1992), as
are jetlike outÑows seen in other disk systems (Livio 1997).

This paper is organized as follows. Section 2 reviews the
relevant aspects of CAK theory for LDWs from O stars.
Section 3 addresses the two-dimensional geometry of disk
LDWs, as well as the radiation Ðeld above the CV disk.
Section 4 deals with an analytic solution for vertical winds
above an isothermal disk, and ° 5 analyzes the solution
topology and Ñow geometry for tilted winds above a disk
with a realistic temperature stratiÐcation. Section 6 com-
pares our results with other models and observations,
and ° 7 summarizes our basic conclusions.

2. CAK THEORY FOR O STARS

2.1. T he Stellar L ine Force

The CAK theory for LDWs from O stars forms the basis
for our model of CV winds and is therefore brieÑy sum-
marized here. CAK assume a line-distribution function per
unit l and i, from UV to IR,

N(l, i) \
1

l

1

i
0

Ai
0

i

B2~a
, (1)

where l is the line frequency and i (in cm2 g~1) is the mass
absorption coefficient normalized to which refersi

0
,

roughly to the strongest driving line in the Ñow (Owocki et
al. 1988). For the power exponent, 0 \ a \ 1 holds, where
the lower limit corresponds to purely optically thin lines
and the (unrealistic) upper limit to purely optically thick
lines. Puls, Springmann, & Lennon (1999) derive froma \ 2

3
KramersÏs formula applied to resonance lines of hydrogenic
ions. Similar values of a are obtained from detailed
non-LTE calculations for dense O-supergiant winds
(Pauldrach 1987 ; Pauldrach et al. 1994). On the other hand,
for low-density winds, e.g., from B stars near the main
sequence, may be more appropriate (Puls, Spring-a \ 1

2
mann, & Owocki 1998). Therefore, we shall consider both
cases and to study the e†ect of a on the struc-a \ 1

2
a \ 2

3
ture of disk winds.

Using equation (1), the CAK force from all lines can be
written in a general way that is applicable for both geome-
tries (e.g., Owocki & Puls 1996),

g
L

\ i
0

v
th

!(a)

1 [ a

1

c2

P
du Ic cü qc~a , (2)

by means of the Sobolev approximation (Sobolev 1957).
!(a) is the complete gamma function, c is the speed of light,
du is the solid angle centered on and is the frequency-cü , Ic
integrated intensity in this direction. The line optical depth
in direction is given bycü

qc \
i
0

v
th

o

cü Æ +(cü Æ v)
, (3)

with gas density o, and being the gradient alongcü Æ $(cü Æ v) cü
of the velocity component in direction Note that iscü . i

0
v
th

independent of the ion thermal speed and so is the linev
th

force. Assuming spherical symmetry, and adopting the
““ radial streaming ÏÏ approximation of CAK, i.e., qc 4 q

r
,

equation (2) simpliÐes to

g
L

\ (i
0

v
th

)1~a
!(a)

1 [ a

F

c2

Adv/dr

o

Ba
, (4)

with frequency-integrated, radial Ñux F.

2.2. Stellar Euler Equation

For an isothermal, spherically symmetric stellar wind, the
stationary Euler equation in dimensionless form can be
written as A

1 [
A2

W

B
W @ \ [1 [

4A2

U
] EW @a , (5)

where, after CAK, we introduced a radial coordinate U \
with being the stellar radius. The sound speed,[R

*
/r, R

*
A, and the Ñow speed, V \ W 1@2, are normalized to the
photospheric escape speed from the reduced stellar mass,
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M(1 [ !), where ! is the Eddington factor. The normalized
wind acceleration is given by W @ \ dW /dU \ r2vv@/
GM(1 [ !), with v the Ñow speed and v@ \ dv/dr. Note (1)
the di†erent meaning of the prime in W @ and v@ and (2) that
the gravitational acceleration is normalized to [1, whereas
CAK normalize it to The constant E in equation (5) is[1

2
.

given by

E \
!(a)

1 [ a

C i
0

v
th

4nGM(1 [ !)

D1~a L /c2

M0 a
, (6)

where G is the gravitational constant, L is the stellar lumi-
nosity, and is the mass-loss rate, GlobalM0 M0 \ 4nr2ov.
solutions to equation (5) exist only above a certain, critical

called an eigenvalue of the problem, i.e., below aE
cr

,
maximum allowable mass-loss rate. In the zero sound speed
limit, A \ 0, the di†erential equation (5) separates into an
algebraic equation,

P 4 W @ ] 1 [ EW @a \ 0 , (7)

and a trivial di†erential equation W @ \ const, which leads
to the CAK velocity law, where isv(r) \ v

=
(1 [ R

*
/r)1@2, v

=
the Ñow terminal velocity. The Euler equation in the form
given in equation (7) is particularly simple and its terms
have a straightforward physical meaning, namely, inertia,
gravity, and line force.

2.3. T he Stellar W ind Topology : Critical Point of the Flow

We now consider solutions to equation (5) with Ðnite A.
According to CAK, for sufficiently large values of E, there
are two solutions in the supersonic regime, W [ A2, termed
““ shallow ÏÏ (small W @) and ““ steep ÏÏ (large W @) solutions ;
whereas in the subsonic, photospheric regime, W \ A2,
only the shallow solutions exist. On the other hand, only
the steep solutions reach inÐnity. Namely, the term
[ 4A2/U (the thermal pressure force caused by geometrical
expansion) becomes inÐnite for r ] O and must be bal-
anced by W @ ] O along the branch of steep solutions. CAK
concluded, therefore, that the true, unique wind solution
has to switch from the shallow to the steep branch at a
““ critical ÏÏ point (see Fig. 1). Of course, a nonzero pressure
term at inÐnity is unphysical because it requires an inÐnite
amount of energy in the Ñow and is purely a result of the
imposed isothermal conditions in the wind.

We Ðnd that shallow solutions can always be extended to
inÐnity, if one allows for a kink in the velocity law at large
radii. At this kink, the wind switches to the branch of decel-
erating solutions, W @ \ 0. The latter are found after repla-
cing W @a in the line force by o W @ oa. Since stellar winds
essentially reach at a few 100 the kink and sub-v

=
R

*
,

sequent deceleration hardly show up. For disk winds, the
kink can be more pronounced ; this is discussed further in
Appendix B.

The subsonic region has an extent of a few percent of the
stellar radius for O-star winds, while the pressure force
[4A2/U becomes important only beyond a few 100 InR

*
.

the intermediate regime, i.e., almost everywhere, the simpli-
Ðed equation (7) with A \ 0 holds to a good approximation,
and therefore W @ \ const. This happens because both
gravity and line force are Pr~2. Solution curves in the
(W @, U)-plane are essentially straight lines, but the lines
bend over because of thermal pressure both at U \ [1 and
0. As a result, the critical point is a saddle point in the

(W @, U)-plane (Bjorkman 1995). The usual deÐnition of a
critical point in hydrodynamics refers, however, to the
(W , U)-plane (a topologically equivalent plane).

For A \ 0, the critical point lies on an extended ridge,
and its position becomes ill-deÐned (Fig. 1a). In this limit,
every point of the critical solution is a critical point. For
A [ 0, however, CAK Ðnd the critical point to lie at r

cr
\

(Fig. 1b). Inclusion of further correction terms to the3/2R
*

line force, especially owing to the Ðnite size of the stellar
disk, breaks the r~2 dependence of the line force, pushes the
two almost degenerate critical solutions W @(U) apart, and
shifts the critical point toward the sonic point (Fig. 1c).
Pauldrach et al. (1986) Ðnd then r

cr
[ 1.1R

*
.

A critical point is the information barrier for LDWs and
plays a role similar to the sonic point in thermal winds or
nozzle Ñows (Abbott 1980). How can the pressure mismatch
of a shallow solution at be communicatedr Z 300R

*
upstream to the critical point at We speculate that it1.1R

*
?

is not really the outer boundary mismatch that forces the
Ñow through a critical point. Instead, the truly dis-
tinguishing property of the critical solution should be its
correspondence to the maximum mass-loss rate in the wind.
Work is underway to identify the feedback mechanism
between the wind and the photosphere that drives the wind
from any shallow solution to the unique critical solution.
This issue will be addressed elsewhere. In the present paper,
we assume that the true disk wind solution is the one with
the maximal allowable mass-loss rate.

The Ñow critical point (subscript ““ cr ÏÏ) is deÐned by the
singularity condition, (i.e., the merging of aLP/LW

cr
@ \ 0

shallow and a steep solution). Together with the Euler
equation, P \ 0, this implies

W
cr
@ \

a

1 [ a
, (8a)

E
cr

\
1

aa(1 [ a)1~a
. (8b)

The eigenvalue determines the maximum mass-loss rate,E
cr

and determines the terminal speed. They are discussedW
cr
@

further in Paper II. Furthermore, from the Euler equation,
dP/dU \ 0 must hold everywhere. This leads to the regu-
larity condition, (ifLP/LU

cr
] W

cr
@ LP/LW

cr
\ 0 W

cr
@@ \ O),

which determines the position of the critical point.

3. DISK WIND GEOMETRY AND RADIATION FIELD IN CVs

3.1. Flow Geometry, Gravity, and Centrifugal Force

The central assumption throughout this paper is that the
helical streamline of a Ñuid parcel in the wind is contained
within a straight cone. While this is certainly an ideal-
ization, and a major restriction of this model, justiÐcation
comes Ðrst from the related kinematical model of Shlosman
& Vitello (1993) and second from the numerical two-
dimensional hydrodynamic simulations of PSD. The latter
showed that the escaping mass loss carrying streamlines are
well approximated by straight lines in the (r, z)-plane, with r
and z being cylindrical coordinates. The rotational speed
and the centrifugal forces in the wind depend on the cone
opening angle that is calculated self-consistently here. The
angular momentum is preserved along any streamline (see
below) and, therefore, does not depend on its shape.
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FIG. 1.ÈSaddle-point topology of stellar CAK winds in the (W @, U)-plane, for (a) a point star and zero sound speed ; (b) a point star and Ðnite sound
speed ; (c) an extended star and Ðnite sound speed. Filled dots mark the sonic points (at U ^ [1) and the critical points.

We denote the angle between the wind cone and the
radial direction in the disk plane by j. This angle is calcu-
lated using the Euler equation and is not assumed a priori.
The footpoint radius of a streamline in the disk is and xr

0
,

is the distance along the cone (see Fig. 2). We search for the
solutions of the Euler equation in the for a[j(r

0
), x]-plane

streamline starting at arbitrary The dependencer
0
. j(r

0
)

leads to the appearance of a new eigenvalue problem for the
disk wind, and derivation of this function is the focus of the
present paper.

Since LDWs are highly supersonic, we neglect the pres-
sure forces and furthermore assume that the azimuthal
velocity is determined by angular momentum conservation
above the disk and by Keplerian rotation in the disk plane.
The tilt angle j has to be a monotonically decreasing func-
tion of to avoid streamline crossing, which would violater

0
the assumption of a pressure-free gas. The only remaining
velocity component is which points upward along thev

x
,

cone. The dynamical problem has therefore been reduced to
solving the Euler equation for v

x
.

In a frame rotating with the angular velocity X of a Ñuid
parcel positioned at radius vector s, there are three Ðctitious
forces (e.g., Binney & Tremaine 1987, p. 664). The Coriolis
acceleration, [2 has no component along and theX Â s5 , xü ,
same is true for the inertial force of rotation, [ WeX0 Â s.
introduce the e†ective gravity function, which is the com-
ponent of gravity minus centrifugal force along the straight
line in direction and is given by g(X, j), withxü , [(GM

wd
/r

0
2)

being the mass of the white dwarf, andM
wd

g(X, j) \
X ] cos j

(1 ] 2X cos j ] X2)3@2
[

cos j

(1 ] X cos j)3
, (9)

where In the following, all lengths written inX 4 x/r
0
.

capital letters are normalized to the footpoint radius, inr
0
,

the disk. For disk winds, the variable X will play the role U
played for stellar winds (cf. eq. [5]). Close to the disk,
X > 1, and g ^ X, while for X ? 1, g ^ X~2. For a vertical

FIG. 2.ÈAdopted Ñow geometry for a CV disk wind. Streamlines are
helical lines and are assumed to lie on straight cones.

ray, j \ 90¡, g has its maximum at while for aX \ 1/J2,
horizontal ray, j \ 0, the maximum is at X \ 1

2
.

Equation (9) shows an important di†erence between
stellar and disk winds. The stellar gravity is always decreas-
ing with distance, while for the disk an e†ective gravity
““ hill ÏÏ must be overcome before the wind can escape. This
e†ect of disk LDWs will be discussed in ° 5.

3.2. Radiation Field above the Disk

Next, we evaluate the line force in equation (2). Besides
the initial growth of e†ective gravity with height, the
opacity-weighted Ñux integral is the central property that
distinguishes disk winds from stellar winds. Pereyra,
Kallman, & Blondin (1997) give an analytical approx-
imation for this integral above an isothermal disk. Unfor-
tunately, an error was introduced with a change of
integration variable, which led to an artiÐcial, linear depen-
dence of the vertical Ñux on z, even as z ] 0. PSD solve this
integral numerically (cf. Icke 1980), using approximately
2000 Gaussian integration points.

In the general spirit of the radial streaming approx-
imation of CAK, we replace the integral in equation (2) by

thus introducing an equivalent optical depth, Weq6 ~aF, q6 .
Ðrst calculate the frequency-integrated Ñux dF(r, z) at a
location (r, z) in cylindrical coordinates, from a Ñat ring of
radius q, radial width dq, and isotropic intensity I(q, 0),

dF(r, z) \
AdF

r
dF

z

B
\ 2nI(q, 0)q dq

z

B3@2

Ar[r2 ] z2 [ q2]

z[r2 ] z2 ] q2]

B
,

(10)

where

B \ (r2 ] z2 [ q2)2 ] 4z2q2 . (11)

For an isothermal disk with isotropic intensity, we integrate
equation (10) over q, to obtain the disk Ñux

F(r, z) \
nI

2

1

JB

A[z/r][r2 ] z2 ] q2]

[r2 [ z2 ] q2

B K
q/rwd

rd
, (12)

where is the outer disk radius. For the nonmagneticr
d

systems considered here, we identify the inner disk radius
with the white dwarf radius. We do not include contri-r

wd
,

butions to the radiative Ñux from the white dwarf and the
boundary layer. Generally, of course, accretion disks are
not isothermal. We, therefore, consider two complementary
cases with (termed ““ Newtonian ÏÏ disk in whatT (r

0
) P r

0
~1@2

follows) and (Shakura &T (r
0
) P r

0
~3@4[1 [ (r

wd
/r

0
)1@2]1@4

Sunyaev 1973 ; hereafter SHS). Observations show that the
brightness temperature stratiÐcation of CV disks is consis-
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FIG. 3.ÈIsocontours of the frequency-integrated, vertical Ñux com-
ponent above a Newtonian disk. The disk extends from 1 toF

z
30r

wd
.

Normalization is I(r
0

\ 5r
wd

, z \ 0) \ 1.

tent with both distributions (Horne & Stiening 1985 ; Horne
& Cook 1985 ; Rutten et al. 1993).

For the Newtonian disk, we Ðnd

F(r, z) \ nI(r, 0)r2
z

r2 ] z2

]a3r2 [ z2 [ q2

2rJB
[

r

z2 ] r2
ln C

3z2 [ r2 ] q2

2zJB
[

z

z2 ] r2
ln Cb ,

trd
t
t
t
t
t
q/rwd

(13)

FIG. 4.ÈSame as Fig. 3 (including normalization), now for the radial
Ñux component Dotted lines indicate an inward Ñux.F

r
.

FIG. 5.ÈNormalized, projected Ñux for SHS (a) and Newto-F3
x
(r

0
, X)

nian (b) disks, at footpoint radii 10, 5, and (top to bottomr
0

\ 20, 2r
wd

curves). The tilt angle with the disk plane is 90¡ for full lines and 60¡ for
dashed lines.

where

C \
(z2 [ r2)q2 ] (z2 ] r2)2 ] (z2 ] r2)JB

q2
. (14)

The surface Ñux above the SHS disk can only be inte-
grated numerically, using equation (10). Yet, this has the
advantage that can be introduced for each ring individ-q6
ually. More speciÐcally, is calculated along the Ñux direc-q6
tion of a given ring at the position of the wind parcel. If the
Ñux in equation (13) is used instead, is calculated along theq6
disk Ñux direction. Typical di†erences in the resulting value
for the tilt angle (see below) are 5¡È10¡ for the twoj

cr
approaches. Corrections owing to the q~a weighting in the
azimuthal integral are even smaller.

Figures 3 and 4 show isocontours for the z- and r-
components of the Ñux in equation (13) above the Newto-
nian disk. For sufficiently large tilt angles, the Ñux along the



No. 1, 1999 WINDS FROM DISKS IN CATACLYSMIC VARIABLES. I. 349

streamlines has a maximum larger than 0) at some X.nI(r
0
,

This is caused by the increasing visibility of the inner, hot
disk regions. We denote this regime, where the Ñux has a
maximum, the ““ panoramic ÏÏ regime, to be distinguished
from the planar ““ disk ÏÏ regime, where and the ““ farF

z
^ nI,

Ðeld ÏÏ regime, where F P X~2.
We introduce the normalized Ñux, F3 (r, z) \

F(r, z) along a streamline, which is independent of/nI(r
0
, 0),

disk luminosity. To quantify the Ñux increase above the
disk, Figure 5 shows the projected, normalized Ñux F3

x
\

as function of X, for di†erent footpoint radii and forxü Æ F3 r
0

both types of nonisothermal disks. Note that the initial
increase of with X caused by the windÏs exposure to theF3

x
central disk region is rather mild, a factor of a few only,
because the central region has a small area. In ° 5 we discuss
how the maximum in controls the base extent of theF3

x
wind above the disk, as well as the height of the wind critical
point.

In deriving the above Ñuxes, the intensity was assumed to
be isotropic. Using instead the Eddington limb darkening
law, with polar angle h, the ver-Ih \ 2/5I

0
[1 ] (3/2) cos h],

tical Ñux in the planar disk regime above an isothermal disk
becomes larger by a factor of 8/7, i.e., limb darkening should
not signiÐcantly a†ect the wind properties. However, limb
darkening can be more important in the UV spectral regime
because of the Wien part of the spectrum, and the correc-
tion factors could become somewhat larger there (Diaz,
Wade, & Hubeny 1996).

4. VERTICAL WIND ABOVE AN ISOTHERMAL DISK

As an analytically tractable case, we consider Ðrst a verti-
cal (or cylindrical) wind with j \ 90¡, or above anxü \ zü ,
inÐnite, isothermal disk with Ñux We again adoptF \ nIzü .
the ““ radial streaming ÏÏ approximation in equation (2), i.e.,

Note that has no contributions from either azi-q6 \ q
z
. q

z
muthal velocity gradients, or from geometricalLvÕ/Lr,
expansion terms, the latter describing photon escapePvÕ,
along the tangent to the helical streamline.

The density o that enters q is replaced by introducing the
mass-loss rate from one side of a disk annulus, SincedM0 .
the mass that streams upward between two cylinders is con-
served,

dM0 (r
0
) \ 2nr

0
dr

0
v
x
(r

0
, x)o(r

0
, x) . (15)

For simplicity, we apply the zero sound speed limit, A \ 0,
for the rest of this paper and neglect the force caused by
electron scattering because of small ! above the geometri-
cally thin disk. The Euler equation becomes

0 \ P(W @, X) \ W @ ] g [ EW @a , (16)

where g \ X/(1 ] X2)3@2 for j \ 90¡, and W @ \ dW /
dX \ 2V dV /dX. Here and V is the Ñowd/dX \ r

0
d/dx,

speed along X, normalized to the local escape speed at the
footpoint on the disk. Note the di†erence in the deÐnitionr

0
of W @ as compared with that for stellar winds (cf. eq. [5]).
Also, normalizing the velocity V instead to the escape speed
from the white dwarf leads to unwanted, explicit appear-
ances of in the Euler equation. The constant for ar

0
E(r

0
)

streamline starting at on the disk is deÐned as (cf. eq. [6])r
0

E(r
0
) \

!(a)

1 [ a

A i
0

v
th

2nG M
wd

B1~a 2nr
0
2 F

z
(r

0
, z \ 0)/c2

(r
0

dM0 (r
0
)/dr

0
)a

. (17)

Similarly to the stellar case, equation (16) for the disk
wind has global solutions only above a critical value E

cr
,

the eigenvalue of the problem, i.e., below a maximum allow-
able mass-loss rate. Unlike the point star case, however, P
in equation (16) is a function of X even when A \ 0. As a
result, the degeneracy in the position of the critical point
does not exist here, and one has a well-deÐned critical point,
irrespective of A.

There exists an additional di†erence between the stellar
and disk LDWs. In Figure 1c, the Ðnite cone correction
factor causes the critical point in the stellar wind to move
upstream, and, for vanishing sound speed, both the critical
point and the sonic point are found in the stellar photo-
sphere. For the disk case, however, only the sonic point falls
toward the photosphere, whereas the critical point stays at
Ðnite height. Namely, from the regularity condition
LP/LX \ 0 (P does not depend on W ), the critical point of
the disk wind lies at the location of maximal gravity, at
X

cr
\ 1/21@2.

This explains why Vitello & Shlosman (1988) Ðnd no
critical point in the disk regime, X > 1, for a vertical wind
with constant ionization. The variable wind ionization
introduces additional gradients into the driving force, shift-
ing the critical point toward the disk photosphere. For the
solution discussed here, vertical ionization gradients are not
mandatory.

Additional justiÐcation that the critical solution is the
true wind solution comes from the fact that only the shallow
solutions connect to the photosphere. However, terminal
speeds of the shallow solutions are much smaller than the
white dwarf escape speed, in sharp contrast to observed CV
winds. The solution we are searching for should, therefore,
switch to the steep branch (with large at a critical point,v

=
)

i.e., there should be the solution of maximum mass-loss rate.
The conditions P \ 0 and LP/LW @ \ 0 lead to

W
cr
@ \

a

1 [ a
g
cr

, (18a)

E
cr

\
1

aa(1 [ a)1~a
g
cr
1~a , (18b)

where This deÐnes the wind solution ofg
cr

\ 2/(3 ] 31@2).
maximum allowable mass-loss rate. The e†ective gravity
hill imposes a ““ bottleneck ÏÏ on the Ñow, i.e., the maximum
of g(X) deÐnes the minimum, constant eigenvalue or theE

cr
,

maximum allowable for the critical solution whichM0 ,
extends from the disk photosphere to large X. Larger values
of E correspond to shallow solutions and, hence, to smaller
mass-loss rates. Smaller values of E correspond to stalling
wind solutions, which become imaginary around the loca-
tion of the gravity maximum. Note that in equationE

cr
(18b) is independent of in accordance with equation (16).r

0
,

5. TILTED DISK WINDS

With all prerequisites at hand, we can now solve the
general eigenvalue problem for a tilted wind above a non-
isothermal disk. The density o in equation (3) is replaced by
the conserved mass-loss rate between two wind cones,

dM0 (r
0
) \ 2nr

0
dr

0
(1 ] X cos j)

]
C

1 [
Xr

0
(dj/dr

0
)

sin j

D
sin jv

x
(r

0
, x)o(r

0
, x) . (19)
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The term (1 ] X cos j) describes the density drop caused
by the increasing radius of the cone, and [1 [ Xr

0
describes the density drop caused by the geo-(dj/dr

0
)/sin j]

metrical divergence of neighboring cones. The factor sin j
stems from the quenching of the Ñow at small j.

5.1. Disk Euler Equation

The geometrical expansion term in the directional+cü
derivative has contributions from the azimuthalcü Æ $(cü Æ v)
curvature of helical streamlines and from the cone diver-
gence Close to the disk, where the mass-loss rate ofdj/dr

0
.

the wind is established, both contributions are small. For
azimuthal curvature terms, this is shown in Appendix A.
With regard to cone divergence, the argument is a poste-
riori, i.e., we Ðnd below that is small. Two neighbor-dj/dr

0
ing wind rays launched at, e.g., intersect at ar

0
D 5r

wd
normalized distance below the disk. Generally,X

i
D [10

is larger by a factor of 10 than the distance betweenX
i

X
cr

,
the disk and the critical point. By analogy with spherically
symmetric stellar winds, where cü Æ $(cü É rü v

r
) \ k2 dv

r
/dr ]

with the geometrical expansion term(1 [ k2)v
r
/r, k \ cü Æ rü ,

for disk winds should bePv
x
$(cü Æ xü ) Pv

x
/[r

0
(X [ X

i
)].

Whereas the geometrical expansion term for O-star winds,
is of the same order as the gradient term,(1 [ k2)v

r
/r,
it is much smaller than the latter for disk winds.k2dv

r
/dr,

On the other hand, far from the disk, the expansion term
may become important. However, we Ðnd from solving the
Euler equation that it has only a marginal inÑuence on the
terminal wind velocity. Furthermore, azimuthal terms for
helical streamlines are unimportant far from the disk, where
the wind is essentially radial. We, therefore, neglect all geo-
metrical expansion terms in the following. Appendix A also
shows that gradients in the azimuthal velocity can be
neglected in the line force. Finally, we assume that the gra-
dient of points in the This is a reasonablev

x
xü -direction.

assumption since the velocity gradients develop roughly in
the Ñux direction, as is shown below. The normalized Euler
equation for a conical disk wind, and for vanishing sound
speed, is then

0 \ P(W @, X) \ W @ ] g [ E f W @a , (20)

with auxiliary function f,

f (r
0
, X)4

C
(1]X cos j)

A
sin j[Xr

0
dj

dr
0

BDaP
rwd

rd
dF3 k1`2a .

(21)

Here, (see eq. [10]), and k is the cosine of thedF3 \ o dF3 o
angle between and the wind cone. Again, W @ \ 2VdF3
dV /dX, where the velocity V is normalized to the local
escape speed ; is deÐned in equation (17). Note that theE(r

0
)

Ñux integral in equation (21) introduces a further depen-
dence of f on Furthermore, because of the weighting withr

0
.

k2a in the integral, the disk Ñux vector and the wind cone
generally do not point in the same direction. For disk winds
as considered here, good alignment between radiative Ñux
and wind Ñow is expected, however. In cases where such an
alignment is not possible, e.g., for atmospheres irradiated
from above, ablation winds at large tilt angle with the radi-
ative Ñux were recently suggested (Gayley, Owocki, &
Cranmer 1999).

5.2. W ind T ilt Angle as an Eigenvalue and
Solution Topology

The critical-point conditions for a speciÐc streamline are,
from equation (20)

W
cr
@ \

a

1 [ a
g
cr

, (22a)

E
cr

\
1

aa(1 [ a)1~a
g
cr
1~a
f
cr

, (22b)

0 \ (1 [ a)
g
cr
@

g
cr

[
f
cr
@

f
cr

, (22c)

where g@ \ Lg/LX and f @ \ Lf/LX. The tilted disk wind is
essentially a two-dimensional phenomenon; hence, we
expect two eigenvalues of the Euler equation with respect to
E and j. Finding the critical solution of maximum mass loss
at a given footpoint implies minimizing E in equationr

0
(22b) with respect to the position of the ““ critical ÏÏ point

We show now that is a saddle point of(X
cr

, j
cr

). (X
cr

, j
cr

)
g1~a/f. We consider Ðrst the X coordinate and recall from
the analysis of the vertical disk wind that the maximum of
g1~a has determined the eigenvalue From equationE

cr
.

(22b), the relevant function now is g1~a/f. This means that
the maximum of g1~a/f with respect to X for a Ðxed j serves
as a bottleneck of the Ñow, i.e., the most stringent condition
on the wind between the photosphere and inÐnity. There-
fore, it deÐnes the maximum allowable mass-loss rate. Next,
we analyze the mass-loss rate along a streamline by varying
its tilt angle j. To obtain the maximum mass-loss rate, we
look for the minimum of g1~a/f as a function of j. This
particular plays the role of a second eigenvalue of thej

cr
Euler equation, besides Note that because of the depen-E

cr
.

dency of f on the wind tilt will change with Ther
0
, r

0
.

eigenvalue is thus given byE
cr

E
cr

\
1

aa(1 [ a)1~a
min

j
max

X

g1~a
f

. (23)

This is the deÐnition of a saddle point of g1~a/f. Isocontours
of this function are shown in Figure 6 for the SHS disk. The
existence of the saddle point in g1~a/f underlines the two-
dimensional nature of disk LDWs. Because the saddle
opens in the X-direction, the wind escapes to large X.

Furthermore, the critical solution of maximum mass loss
passes also through a saddle point of the Euler function P in
the (W @, X)-plane, in complete analogy with O-star winds.
(It may be an interesting task to consider the solution topol-
ogy in the three-dimensional space spanned by [j, X, W @].)
The regularity condition, equation (22c), determines the loci

of these critical points, as shown by the heavy lines inX
cr

Figure 6. On the left branch of these curves, which also pass
through the saddle point of g1~a/f (if the latter exists), lie
critical points of the saddle- or X-type. Here, W @(X) can
switch from a shallow (small W @) to a steep (large W @) solu-
tion. On the other hand, the right branch of the regularity
curves, which pass through the minimum of g1~a/f, consists
of critical points of the focal type (Holzer 1977 ; Mihalas &
Mihalas 1984). They correspond to solutions that do not
extend from the disk photosphere to large radii and are
ignored in our discussion.

Figure 7 shows a good overall alignment of the wind ray
of maximum mass-loss rate with the radiative Ñux vector
from the disk, at least up to the critical point. This is (1)
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FIG. 6.ÈIsocontours of g1~a/f, normalized to [2/(3 ] 31@2)]1~a, over the (X, j)-plane. Footpoints of the wind are at 5, and 15 respectively (leftr
0

\ 3, r
wd

,
to right panels). The isocontours have logarithmic spacing. The temperature stratiÐcation is that of the SHS disk with and was used. Heavyr

d
\ 30r

wd
, a \ 2

3
lines are solutions to the regularity condition in eq. (22c).

because the eigenvalue depends linearly on f, but onlyE
cr

with a small power of 1 [ a on g, and (2) because only f (j)
has a maximum, whereas g(j) falls o† monotonically.

The Ðgure suggests that the wind should actually be
launched vertically from the disk surface and then later
bend over because of the increasing radial Ñux component.
The latter is (mostly) caused by the radial temperature
stratiÐcation of the disk, with some number n.T P r

0
~n@4,

From a series expansion, one Ðnds for z >F
r
(z) P [nz ln z,

We expect streamline bending because of this initialr
0
.

increase in to be more important than bending caused byF
r

the higher gas pressure at smaller radii (for a disk with
radial temperature fall-o†). Furthermore, streamline
bending caused by centrifugal forces occurs only on a much
larger length scale, Since the true bent trajectory isr

0
.

expected to follow the Ñux vector rather closely, a some-
what larger mass-loss rate is expected than along straight
wind cones. However, the di†erence should be rather small.
A clear beneÐt from this approximation is a dramatically
reduced complexity of the wind treatment.

FIG. 7.ÈRadiative Ñux vector above the SHS disk with Ther
d
\ 30r

wd
.

straight line indicates a wind cone at eigenvalue j \ 61¡ (cf. Table 1). The
plus sign marks the critical point.

5.3. Inner and Outer Disk W inds

Up to this point we ignored the possibility of multiple
saddle points of g1~a/f. We now address this issue. As
shown in Figure 6, for the function g1~a/f hasr

0
[ 4r

wd
only one saddle at a large height, e.g., forX

cr
^ 4.4 a \ 2

3
.

However, for a second saddle exists at smallerr
0

Z 4r
wd

,
which lies on a di†erent branch of the regularity curve.X

cr
,

We name these two types of saddles the high and low
saddles, according to their height above the disk. TheX

cr
e†ective gravity ““ hill ÏÏ separates the two saddle points.

From Figure 6, the low saddle corresponds to a larger
mass-loss rate than does the high saddle. For ther

0
Z 4r

wd
,

solution of maximum mass loss is therefore determined by
the low saddle. For smaller however, only the highr

0
,

saddle exists and determines the wind solution. These two
cases deÐne the outer and inner disk wind, respectively.
Clearly, the assumption of straight streamlines is a severe
one for the inner wind with high-lying critical points.

The tilt angle of the outer wind is around 60¡, namely
at and 55¡ at 20 This is largelyj

cr
\ 65¡ r

0
\ 4r

wd
, r

wd
.

independent of a. For the inner wind, the tilt is larger, j
cr

\
80¡ for and 70¡ for Furthermore, the criticala \ 2

3
a \ 1

2
.

point, for the inner wind is much higher above the diskX
cr

,
than the critical point for the outer wind. As mentioned
above, these critical points fall on the opposite slopes of the
e†ective gravity hill. For the outer disk wind, the position

of the critical point is moving closer to the wind sonicX
cr

point with increasing The reason for this is the largerr
0
.

gradient of the disk radiative Ñux in the x-direction for
larger As a result, the line force can balance gravity atr

0
.

smaller X.
Figure 8 shows critical wind solutions W @(X) above the

SHS disk for di†erent The decelerating solutionr
0
.

branches, W @ \ 0, are discussed in Appendix B. The critical
point topology of Figure 8 may be compared with that of
the CAK stellar wind in Figure 1. (Note, that W @ has a
slightly di†erent deÐnition for the stellar and disk wind
cases.) From Figure 8, we can also derive a condition for the
existence of a stationary, outer wind solution, further clari-
fying the role of the e†ective gravity hill. The plus signs at
the critical points in the Ðgure indicate where the Euler
function P [ 0, i.e., where drag forces (gravity and inertia)
overcome the driving forces (line and centrifugal force) ; this
is correspondingly so for the minus signs. Hence,

at the low saddle, or, using equation (22a),L2P/LX
cr
2 \ 0

(22b), and (22c), (1 [ a) (respectively, ““ [ ÏÏg
cr
@@ /g

cr
\ f

cr
@@ /f

cr
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FIG. 8.ÈCritical wind solutions W @(X) at zero sound speed above the
SHS disk At high saddle ; at and(r

d
\ 30r

wd
, a \ 2

3
). r

0
\ 3r

wd
: r

0
\ 5

low saddle. The branches W @ \ 0 are decelerating wind solutions15r
wd

:
and are discussed in Appendix B. Plus and minus signs refer to the sign of
the Euler function P in eq. (20). For comparison with the critical-point
topology of a spherically symmetric, stellar wind, see Fig. 1.

at the high saddle). This means, the maximum of f must be
sufficiently broad to allow for a stationary solution with a
low saddle. The critical point for a vertical wind above an
inÐnite, isothermal disk, where f \ 1, corresponds to a low
saddle.

To understand the geometry of disk LDWs fully, we con-
sider also the transition region between the inner and outer
winds. As discussed above, the low saddle does not exist
below Figure 9 shows g1~a/f in the neighborhoodr

0
[ 4r

wd
.

of this footpoint radius. At only the high saddler
0

\ 4r
wd

,
exists and determines the wind solution. At anr

0
\ 4.03r

wd
,

inner regularity curve of elliptical shape has formed but not
yet the low saddle point of g1~a/f. The mass-loss rate is
maximal at the smallest j along the curve, i.e., at its lower
tip, which determines the wind solution in this transition
regime. By a low saddle has formed atr

0
\ 4.15r

wd
, j

cr
\

65¡. Going to larger the wind tilt stays (roughly) at thisr
0
,

value which corresponds to the maximum mass-lossj
cr

,
rate. In total, the wind tilt switches continuously from the
high to the low saddle over a narrow range of 0.1 in ther

wd
footpoint radius.

5.4. Overall Disk W ind Geometry

Table 1 lists important parameters of the wind above
SHS and Newtonian disks, i.e., the tilt angle, the nor-j

cr
,

malized mass-loss rate from a disk annulus, and them5
cr

,
critical point location, The mass-loss rate is normal-X

cr
. m5

ized to a vertical wind above an isothermal disk. The
shallow maxima of the function in Figure 5 areF3

x
responsible for Implications of these mass-lossm5 \ O(1).
rates are discussed in Paper II. From the table, one Ðnds the
ray dispersion in the outer wind, at intermediate footpoint
radii 4È10 to ber

wd
,

dj

dr
0

^ [
1¡

r
wd

. (24)

Farther in or out, the ray dispersion is even smaller. Since
also enters the Euler equation (20), the full winddj/dr

0
problem can be solved only iteratively. However, the depen-
dence of the eigenvalues and on is weak, andE

cr
j
cr

dj/dr
0

we assume throughout that equation (24) holds.
The overall geometry of the disk wind is shown in Figure

10. For the critical points are at fora \ 2
3
, x

cr
D 10È20 r

wd
the inner wind, then move toward the disk photosphere and
stay at independent of footpoint radius in thex

cr
^ r

wd
, r

0
outer wind. For on the other hand, the critical pointsa \ 1

2
,

lie somewhat higher for the outer wind, at butx
cr

^ 2r
wd

,
their location is again independent of radius While ther

0
.

division into an inner and outer wind persists (namely high-
lying vs. low-lying saddle, or critical points on opposing

FIG. 9.ÈIsocontours of g1~a/f, normalized to from 0.855 to 0.885 in steps of 2 ] 10~3 at the low saddle ; from 1.05 to 1.15 in steps of 10~2 at(2/3J3)1~a ;
the high saddle. At 4.03, and respectively (left to right panels). Heavy lines are solutions to the regularity condition. Circles mark the criticalr

0
\ 4, 4.15r

wd
,

wind solution of maximum mass-loss rate. Within the footpoint range from to the wind switches from to via a growingr
0

\ 4 4.15r
wd

, j
cr

\ 80¡ j
cr

\ 65¡
regularity curve of ellipsoidal shape.



No. 1, 1999 WINDS FROM DISKS IN CATACLYSMIC VARIABLES. I. 353

TABLE 1

TILT ANGLE NORMALIZED MASS-LOSS RATE AND POSITION OF THE CRITICAL POINT FORj
cr

, m5
cr

, X
cr

DIFFERENT DISK WIND MODELS

SHS DISK NEWTONIAN DISK

a \ 2
3

a \ 1
2

a \ 2
3

a \ 1
2

r
0
/r

wd
j
cr

(¡) m5
cr

X
cr

j
cr

m5
cr

X
cr

j
cr

m5
cr

X
cr

j
cr

m5
cr

X
cr

2 . . . . . . . 80 0.42 4.4 68 0.62 1.9 78 0.64 4.3 65 0.94 1.2

3 . . . . . . . 80 0.60 4.4 72 1.02 2.3 78 0.90 4.7 65 1.45 0.82

4 . . . . . . . 80 0.86 4.4 69 1.60 1.7 65 1.23 0.32 63 1.78 0.58

5 . . . . . . . 64 1.37 0.26 63 2.23 0.52 64 1.32 0.26 62 2.10 0.43

6 . . . . . . . 62 1.48 0.19 61 2.69 0.35 63 1.37 0.23 61 2.23 0.38

7 . . . . . . . 61 1.60 0.16 60 3.08 0.27 63 1.37 0.21 61 2.37 0.34

10 . . . . . . 58 1.82 0.11 58 3.84 0.18 62 1.48 0.17 60 2.69 0.28

15 . . . . . . 57 2.10 0.08 55 5.41 0.12 61 1.54 0.15 58 3.08 0.23

20 . . . . . . 56 2.26 0.06 53 6.57 0.10 60 1.60 0.13 58 3.31 0.2

25 . . . . . . 55 2.45 0.05 52 8.16 0.08 60 1.67 0.13 57 3.31 0.3

28 . . . . . . 55 2.59 0.04 51 8.16 0.10 58 1.35 0.2 57 2.44 0.2

NOTEÈ.Underlined numbers indicate the transition from the inner to the outer wind.

sides of the gravity hill), the transition in j between the two
regions is smooth for and the inner tilt reaches aa \ 1

2
,

maximum of j \ 70¡ only.
The innermost disk region, from is left out of1È2r

wd
,

Figure 10. The details of the disk wind and its very existence
here are subject to great uncertainties in the radiation Ðeld,
which depends on the properties of the transition layer and
the white dwarf itself. The outer boundary of the disk LDW,
on the other hand, is set by the radius where the disk tem-
perature falls below 104 K and UV line driving becomes
inefficient, in analogy with stellar winds (Abbott 1982 ;
Kudritzki et al. 1998). For the SHS disk with L

d
\ 10 L

_
,

this should happen around 30r
wd

.

6. DISCUSSION

Here we compare our theoretical model of LDWs from
accretion disks in CVs with those available in the literature,
both kinematical and dynamical models. We ignore the
radial wind models, with the white dwarf being the wind
base, because they are in a clear contradiction with current
observations (e.g., review by Mauche & Raymond 1997). An
alternative source of gas is the disk itself. Kinematical
models that account for this source of material subject to
the line-driving force successfully explained the observed
bipolarity of the outÑow and reproduced the inclination-

dependent line proÐles (Shlosman & Vitello 1993). Their
weak point was the absence of a unique solution. The one-
dimensional dynamical models in a simpliÐed disk radi-
ation Ðeld revealed some major di†erences between the
stellar and disk winds, e.g., the bipolarity and the existence
of a gravity hill (Vitello & Shlosman 1988).

More sophisticated two-dimensional kinematical models,
supplemented with a three-dimensional radiation transfer
in Sobolev approximation, showed the importance of
rotation in shaping the lines (Vitello & Shlosman 1993 ;
Shlosman et al. 1996). Finally, the two-dimensional hydro-
dynamical model of a disk wind in a realistic radiation Ðeld
and with the line-force parameterized by the CAK approx-
imation has addressed the issue of Ñow streamlines and
mass-loss rates in the wind (PSD). Our comparison, there-
fore, is focused on these models.

Vitello & Shlosman (1993) set up a kinematical disk wind
model assuming straight Ñow lines in order to Ðt the C IV P
Cygni line proÐles of three CVs observed with the IUE
satellite. The Ðt parameters included the inner and outer
terminating radius of the wind base and the corresponding
tilt angles of the wind cone. The best Ðt appeared to be
indi†erent to the mass-loss rate, within the range of 10~1 to
10~2 of the accretion rate. In the present work, which
accounts for wind dynamics, we Ðnd lower mass-loss rates

FIG. 10.ÈWind geometry above the SHS disk according to Table 1, for (left-hand panel) and (right-hand panel). Black regions(r
d
\ 30r

wd
) a \ 2

3
a \ 1

2
indicate the accelerating LDW, and thin white lines show individual wind cones. Gray areas indicate decelerating wind (Appendix B) for a ray dispersion

““ I ÏÏ and ““ O ÏÏ mark the inner and outer wind ; ““ T ÏÏ is the transition region. Heavy white lines are locations of Ñow critical points. Thedj/dr
0

\ [1¡/r
wd

.
innermost region of the disk, at is not treated because of uncertainties in the radiation Ðeld.r

0
\ 2r

wd
,
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more justiÐed and discuss various implications of these
rates on the wind models in Paper II. The tilt of the inner-
most wind cone in Vitello & Shlosman was rather steep,
j \ 80¡, while at the outer disk edge j \ 25¡. A similar
work by Knigge et al. (1995), but using Monte Carlo radi-
ation transfer in the wind, gave similar results. In the
present work, the tilt angle j is calculated self-consistently
from the Euler equation, resulting in a similar inner tilt as
found in kinematical models, while the outer tilt di†ers by a
factor of 2 between the two approaches.

The most advanced numerical modeling of CV winds
from the SHS disk was performed by PSD using the time-
dependent ZEUSS two-dimensional code. We Ðnd a
number of similarities with PSD, but di†erences exist as
well. Our comparison is limited to their models 2È5, i.e.,
those without a central luminous star. These models are in
agreement with the overall wind geometry discussed here.
This includes the streamline shape and the run of the wind
opening angle with radius. The streamlines in PSD appear
to form straight lines in the (r, z)-plane, in striking similarity
with the previous kinematical models. In addition, the
change in the wind opening angle with distance from the
rotation axis seems to be weak in PSD. The mass-loss rates
are consistent between both models, and so are the wind
optical depths, which can approach unity even for very
strong resonance lines (Paper II).

While PSD also Ðnd two markedly distinct Ñow regions,
the inner and outer, their inner wind, at appearsr

0
[ 4r

wd
,

as the only outÑow. The outer disk region, at radii Z4r
wd

,
exhibits a time-dependent irregular Ñow, resulting in essen-
tially no mass loss. On the other hand, in our model, mass
loss from the SHS disk is dominated by the inner wind and
the innermost part of the outer wind, as is discussed in
Paper II. Interestingly, our outer wind seems to be more
robust than the inner wind. For the inner wind, the balance
of driving and drag forces that leads to a high saddle on the
far side of the gravity hill is a rather delicate one. Setting, for
example, the centrifugal force arbitrarily to zero causes the
high saddle solution to vanish, whereas the low saddle
remains almost unchanged.

PSD suggest that the irregular behavior of their outer
Ñow is a consequence of the di†erent X-dependence of
gravity and disk Ñux, with the gravity preventing the wind
from developing. This is similar to chocking a nozzle Ñow.
However, we Ðnd here that at radii where a lowr

0
Z 4r

wd
,

saddle exists, the fast increase in the projected disk Ñux,
results in a sufficiently strong growth of the lineF3

x
(X),

force, which drives the wind past the gravity hill. For the
inner wind regions, on the other hand, where no lower
saddle branch exists, the wind indeed must overcome the
gravity barrier without the appropriate radiation Ñux
increase with X. In contrast to the Ðndings of PSD, mass
overloading seems therefore more likely for the inner wind.
Indeed, from the simulations by PSD, it appears that wave-
like perturbations originate at the base of the inner wind
(D. Proga, 1999, private communication) and propagate to
outer disk regions where they prevent a stationary solution
from developing. Future work will have to clarify this issue.

Furthermore, we cannot conÐrm the dependence of j on
the disk luminosity as in the PSD model. We Ðnd that the
eigenvalue for each streamline is determined from thej

cr
positions of the saddle points of the function g1~a/f. Both g
and f are independent of the disk luminosity, f speciÐcally so
because it is normalized to the Ñux at the streamline foot-

point (eq. [21]). Therefore, depends only on the radialj
cr

temperature stratiÐcation in the disk.
One important issue neglected in our modeling is the

saturation of the line force when all the driving lines become
optically thin. If this thick-to-thin transition occurs before
the Ñow reaches its critical point, the wind solution is lost,
since the drag forces overcome the driving forces. However,
this still leaves the possibility that a more complicated wind
dynamics is established, where the decelerating Ñow at some
larger radius starts again to accelerate (i.e., jumps from a

to a solution). We leave this question open forW
~
@ W

`
@

future scrutiny and note here that the mass-loss rates
derived from the present eigenvalues E are upper limits.

The present work is based on the CAK theory for stellar
winds. Over the years, questions have been raised concern-
ing the physical meaning of the CAK critical point (Thomas
1973 ; Lucy 1975 ; Cannon & Thomas 1977 ; Abbott 1980 ;
Owocki & Rybicki 1986 ; Poe, Owocki, & Castor 1990).
Most interesting for the present context is the inclusion of
higher order corrections to the di†use line force in the
Sobolev approximation, which shift the critical point even
closer to the sonic point (Owocki & Puls 1998 ; see also Fig.
1). This proximity of the sonic and critical points may not
be coincidental, and one can speculate whether or not the
sonic point determines the mass-loss rate instead of the criti-
cal point. In contrast, we Ðnd for the disk wind cases, where
the sonic and critical points lie far apart, e.g., for a vertical
wind above an isothermal disk or a tilted wind close to the
rotation axis (““ inner wind ÏÏ).

These fundamental issues impair our understanding of
LDWs from stars and disks and therefore must be
addressed in the future.

7. SUMMARY

We discuss an analytical model for two-dimensional sta-
tionary winds from accretion disks in cataclysmic variable
stars. The parameters chosen are typical for high-accretion
rate disks in nova-like CVs. We solve the Euler equation for
the wind, accounting for a realistic radiation Ðeld above the
disk, which drives the wind by means of radiation pressure
in spectral lines. Some key assumptions are that each helical
streamline lies on a straight cone ; that the driving line force
can be parameterized according to CAK theory ; and that
the thermal gas pressure in the supersonic wind can be
neglected. Our results are summarized as follows.

The disk wind solutions are characterized by two eigen-
values, the mass-loss rate and the Ñow tilt angle, withj

cr
,

the disk. The additional eigenvalue for each streamlinej
cr

reÑects the two-dimensional nature of the model. We Ðnd
that the wind exhibits a clear biconical geometry with a
small ray dispersion. SpeciÐcally, two regions can be distin-
guished in the wind, launched from within and outside 4

respectively. The tilt angle for the outer wind is j D 60¡r
wd

,
with the disk. At these angles, the wind Ñow and radiative
Ñux vectors from the disk are well aligned. For the inner
wind, the tilt angle is larger, up to 80¡. We emphasize that
the disk wind tilt angle (i.e., the wind collimation) depends
upon the radial temperature stratiÐcation in the disk solely,
unless there is an additional degree of freedom such as
central luminosity associated with nuclear burning on the
surface of the white dwarf.

A major distinction between stellar and disk winds is the
existence of maxima in both the gravity and the disk Ñux
along each streamline. The Ñux maximum appears to be a
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crucial factor in allowing the wind to pass over the gravity
““ hill.ÏÏ The Ñux increase is more pronounced farther away
from the rotation axis. As a result, the critical point of the
outer wind lies close to the disk photosphere and to the
sonic point. In fact, it lies upstream of the top of the gravity
hill, and this proximity of the critical and sonic points is
typical of LDWs from O stars as well. On the other hand,
for the inner wind, the increase in radiation Ñux with height
is smaller, and the critical point lies far away from the sonic
point, beyond the top of the gravity hill.

Comparing our analytical models with the two-
dimensional numerical simulations of Proga et al. (1998), we

Ðnd an overall good agreement in the streamline shape, tilt
angle, and mass-loss rate, but our wind baseline is wider.

We are grateful to Jon Bjorkman, Rolf Kudritzki, Chris
Mauche, Norman Murray, Stan Owocki, Joachim Puls,
and Peter Vitello for numerous discussions on various
aspects of line-driven winds. I. S. acknowledges the hospi-
tality of the IGPP/LLNL, where this work was initiated,
and of its director, Charles Alcock. This work was sup-
ported in part by NASA grants NAG5-3841 and
WKU-522762-98-06, and HST GO-06546.02-95A and AR-
07982.01-96A.

APPENDIX A

LINE FORCE CAUSED BY GRADIENTS IN THE AZIMUTHAL VELOCITY

We estimate here the importance of azimuthal velocity terms for the line force in the x-direction. Assuming Keplerian
rotation within the disk, and angular momentum conservation above the disk, one has (with r and z being cylindrical
coordinates),

LvÕ/Lz

Lv
x
/Lx

\ [
1

J2

1

tan j

1

1 ] X cos j

JW

W @
,

LvÕ/Lr

Lv
x
/Lx

\ [
1

J2

1 [ X cos j

(1 ] X cos j)2

JW

W @
,

[
vÕ/r

Lv
x
/Lx

\ [
J2

(1 ] X cos j)2

JW

W @
. (A1)

Here, the singularity of tan~1 j at j \ 0 is a result of neglecting the pressure terms in the Euler equation. Note that LvÕ/Lr
changes sign at X \ 1/cos j. From equation (A1), gradients in are comparable to gradients in when W 1@2/W @ D 1. ThevÕ v

x
main question is their inÑuence on the mass-loss rate. Because, in the CAK model, is determined by the conditions at theM0
critical point, we calculate W 1@2/W @ at the latter. We consider Ðrst a vertical wind from an isothermal disk. Since W @ grows
monotonically up to and somewhat beyond the critical point (see Fig. 8), and because W \ / W @dX, one has (W

cr
)1@2/W

cr
@ \

(3/2)3@4 ] (1 [ a/a)1@2 D 1. Here, and equation (18a) were used. Alternatively, the critical points of the outer windX
cr

\ 1/21@2
above a nonisothermal disk typically lie close to the disk, where g(X) ^ X. Using equation (22a), (X

cr
/W

cr
@ )1@2 D

(1 [ a/a)1@2 D 1. Both disk cases give, therefore, essentially the same result. We conclude that can be importantvÕ-terms
everywhere between the disk photosphere and the critical point and, hence, may modify M0 .

To Ðnd their e†ect on we include in the evaluation of the line force, equation (2), in an approximate manner.M0 , vÕ-terms
Only the disk regime is considered, in which case the radiation intensity is roughly isotropic and the radiation Ñux has a
z-component only. The azimuthal part of the solid angle integral in equation (2) is approximated by a four-point quadrature
at angles nn/2 with where n \ 0, 1, 2, 3. This leads to a correction factor of the approximate formrü ,
1/4(2 ] o 1 ] S oa ] o 1 [ S oa) to the line force, EfW @a. Here, S is a linear combination of the expressions in equation (A1), with
coefficients \1 from angle integration. In the disk regime, from equation (A1). This coincides with the borderlineS

cr
D 1

between an increase and a decrease in due to the inclusion of which lies at for and atM0 vÕ-terms, S
cr

\ 1.25 a \ 1
2

S
cr

\ 1.18
for Hence, a detailed, numerical calculation of the above angle integral is required to decide which of both casesa \ 2

3
.

actually occurs. Since is close to unity, the inÑuence on the mass-loss rate is limited to a 30% e†ect. We, therefore, neglectS
cr

in calculating the line force.vÕ-terms

APPENDIX B

DISK WIND DECELERATION

In Figure 6, isocontours that cross through the low saddle point loop into one another at some larger height, AtX
d
.

one has from the Ðgure, i.e., the allowed maximum mass-loss rate in this region is smaller than that at theX [ X
d
, E [ E

cr
saddle. At these distances, inertia and gravity overcome the line force plus centrifugal force, and the wind decelerates, W @ \ 0.
As is shown in Paper II, the wind speed always exceeds the local escape speed at which implies that the decelerating windX

d
,

reaches inÐnity at a positive speed.
Because of the deceleration, the velocity law becomes nonmonotonic, and the line transfer is no longer purely local, because

global couplings occur between distant resonance locations. We neglect these couplings and simply replace W @a in the line
force by o W @ oa. For a wind ray launched at Figure 8 shows that a single, decelerating branch, accom-r

0
\ 5r

wd
, W

~
@ \ 0,

panies the critical, accelerating solution of maximum mass-loss rate. It is suggestive that at the solution curve jumpsW
`
@ X

d
from the to the branch and extends thereupon to inÐnity.W

`
@ W

~
@
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The discontinuity in W @ introduces a kink in the velocity law. Such kinks propagate at sound speed (Courant & Friedrichs
1948 ; actually, for LDWs, at some modiÐed, radiative-acoustic speedÈsee Abbott 1980 and Cranmer & Owocki 1996) and
are therefore inconsistent with the assumption of stationarity. It seems plausible, however, that the discontinuity in W @ is an
artifact of the Sobolev approximation, since the latter becomes invalid at small i.e., as W @ ] 0. An exact line transferdv

x
/dx,

should instead give a smooth transition from to We Ðnd indeed cases of ““ almost ÏÏ smooth transitions, where bothW
`
@ W

~
@ .

e.g., in the top panel of Figure 8.dW
`,~
@ /dX

d
] [O,
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Lucy, L. B., & Solomon, P. M. 1970, ApJ, 159, 879
Mauche, C. W., & Raymond, J. C. 1997, in Cosmic Winds and the Helio-

sphere, ed. J. R. Jokipii, C. P. Sonett, & M. S. Giampapa (Tucson : Univ.
of Arizona Press), 111

Mauche, C. W., et al. 1999, in preparation
Mihalas, D., & Mihalas, B. 1984, Foundations of Radiation Hydrody-

namics (New York : Oxford Univ. Press)
Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914
Owocki, S. P., & Puls, J. 1996, ApJ, 462, 894
ÈÈÈ. 1998, ApJ, 510, 355
Owocki, S. P., & Rybicki, G. B. 1984, ApJ, 284, 337
ÈÈÈ. 1985, ApJ, 299, 265
ÈÈÈ. 1986, ApJ, 309, 127
Pauldrach, A. 1987, A&A, 183, 295
Pauldrach, A., Kudritzki, R. P., Puls, J., Butler, K., & Hunsinger, J. 1994,

A&A, 283, 525
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86
Pereyra, N. A., Kallman, T. R., & Blondin, J. M. 1997, ApJ, 477, 368
Poe, C. H., Owocki, S. P., & Castor, J. I. 1990, ApJ, 358, 199
Proga, D., Stone, J. M., & Drew, J. E. 1998, MNRAS, 295, 595 (PSD)
Pudritz, R. E., & Norman, C. A. 1986, ApJ, 301, 571
Puls, J., Springmann, U., & Lennon, M. 1999, in preparation
Puls, J., Springmann, U., & Owocki, S. P. 1998, in Cyclical Variability in

Stellar Winds, ed. L. Kaper & A. W. Fullerton (Berlin : Springer), 389
Rutten, R. G., Dhillon, V. S., Horne, K., Kuulkers, E., & Van Paradijs, J.

1993, Nature, 362, 518
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 (SHS)
Shlosman, I., & Vitello, P. 1993, ApJ, 409, 372
Shlosman, I., Vitello, P., & Mauche, C. W. 1996, ApJ, 461, 377
Shlosman, I., Vitello, P., & Shaviv, G. 1985, ApJ, 294, 96
Sobolev, V. V. 1957, Soviet Astron., 1, 678
Thomas, R. N. 1973, A&A, 29, 297
Vitello, P., & Shlosman, I. 1988, ApJ, 327, 680
ÈÈÈ. 1993, ApJ, 410, 815
Woods, D. T., Klein, R. I., Castor, J. I., McKee, C. F., & Bell, J. B. 1996,

ApJ, 461, 767



THE ASTROPHYSICAL JOURNAL, 526 :357È364, 1999 November 20
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

DYNAMICS OF LINE-DRIVEN WINDS FROM DISKS IN CATACLYSMIC VARIABLES.

II. MASS-LOSS RATES AND VELOCITY LAWS

ACHIM FELDMEIER AND ISAAC SHLOSMAN

Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 ; achim=pa.uky.edu, shlosman=pa.uky.edu

AND

PETER VITELLO

Lawrence Livermore National Laboratory, L-282, P.O. Box 808, Livermore, CA 94550 ; vitello=llnl.gov

Received 1999 February 9 ; accepted 1999 July 2

ABSTRACT

We analyze the dynamics of two-dimensional stationary, line-driven winds from accretion disks in
cataclysmic variable (CV) stars by generalizing the formalism of Castor, Abbott, and Klein (CAK) for O
stars. In Paper I, we solved the wind Euler equation, derived its two eigenvalues, and addressed the
solution topology and wind geometry. Here, we focus on mass-loss rates and velocity laws of the wind.
We Ðnd that disk winds, even in luminous nova-like variables, have low optical depth, even in the
strongest driving lines. This suggests that thick-to-thin transitions in these lines occur in the wind. For
disks with a realistic radial temperature law, the mass loss is dominated by gas emanating from the inner
decade in radius. The total mass-loss rate associated with the wind from a disk of luminosity 10 isL

_
D10~12 yr~1, or 10~4 of the mass accretion rate. This is 1 order of magnitude below the lowerM

_
limit obtained from Ðtting P Cygni line proÐles using kinematical wind models when the Lyman contin-
uum is suppressed. The difficulties associated with such small mass-loss rates for line-driven winds from
disks in CVs are principal and conÐrm our previous work on this subject. We conjecture that this issue
may be resolved by detailed non-LTE calculations of the CAK line force within the context of CV disk
winds and/or by better accounting for the disk energy distribution and wind ionization structure. We
Ðnd that the wind velocity proÐle is well approximated by the empirical law used in kinematical model-
ing. The acceleration length scale is given by the footpoint radius of the wind streamline in the disk. This
suggests an upper limit of to the acceleration scale, which is smaller by factor of a few as com-D10r

wd
pared with values derived from line Ðtting.

Subject headings : accretion, accretion disks È novae, cataclysmic variables È stars : mass loss È
stars : winds, outÑows

1. INTRODUCTION

Line-driven winds (hereafter LDWs) are expected around
luminous objects the spectra of which peak in the UV, such
as OB stars and accretion disks, stellar and galactic (Vitello
& Shlosman 1988). Feldmeier & Shlosman (1999, hereafter
Paper I) have investigated a two-dimensional analytical
model of LDWs from disks in cataclysmic variables (CVs)
characterized by a large mass transfer rate from the second-
ary to the white dwarf. Such CVs, i.e., nova-like variables
and dwarf novae in outburst, show clear signs of outÑows
driven by radiation pressure (Paper I and references
therein).

Recent numerical simulations of time-dependent two-
dimensional disk winds by Proga, Stone, & Drew (1998 ;
hereafter PSD) largely conÐrmed the previous kinematical
studies by Shlosman & Vitello (1993) and Knigge, Woods,
& Drew (1995) and delineated a number of empirical
relationships that require further physical explanation.
Paper I has addressed the two-dimensional geometry of the
wind streamlines and the topology of solutions to the wind
momentum equation. In particular, a comparison with the
PSD model was made as well as a comparison with the
one-dimensional LDWs from OB stars.

The main results of Paper I are as follows. First, the
solutions to the wind momentum equation are character-
ized by two eigenvalues, the mass-loss rate and the Ñow tilt
angle with the disk, in the presence of a realistic radiation
Ðeld above the disk. The existence of the second eigenvalue
is a reÑection of the multidimensional nature of a disk wind.

The wind itself appears to be collimated to a certain degree,
i.e., the wind collimation angle with the rotation axis (semi-
opening angle) is about 10¡ for the wind launched within
four white dwarf radii, and about 30¡ for the outer wind, for
the Shakura & Sunyaev (1973, hereafter SHS) disk. Further-
more, the wind collimation solely depends on the radial
temperature stratiÐcation in the disk, unless there is an
additional degree of freedom such as a central luminosity
associated with nuclear burning on the surface of the white
dwarf or with a boundary layer. The above degree of colli-
mation for disk winds in CVs should be taken with caution
at large distances from the disk.

Second, a major distinction between stellar and disk
LDWs is the existence of maxima in both the gravity and
the radiation Ñux above the disk. This behavior of gravity
and radiation Ñux results in profound topological di†er-
ences in the solutions to the stellar and disk wind momen-
tum equations. We Ðnd that two distinct regions of disk
wind exist, the inner and outer winds. The critical point of
the outer wind lies close to the disk photosphere and to the
sonic point, upstream of the top of the gravity ““ hill.ÏÏ This
proximity of the critical and sonic points is typical of LDWs
from O stars as well. On the other hand, for the inner wind,
the critical point lies far away from the sonic point, beyond
the gravity hill.

Observationally, the mass-loss rates from CV disk winds
are poorly constrained. This is mainly a consequence of
uncertainties in the ionizing Ñuxes from di†erent com-

357



358 FELDMEIER ET AL. Vol. 526

ponents in the system and, therefore, of the ionization strati-
Ðcation of the wind. Neglecting the boundary layer and
assuming a local blackbody radiation from the disk, Vitello
& Shlosman (1993) and Knigge et al. (1995) Ðnd wind mass-
loss rates D1% of the accretion rate by Ðtting observed P
Cygni line proÐles. For a system with luminosity 10 thisL

_
,

corresponds to a mass-loss rate of about 2 ] 10~10 M
_

yr~1.
These mass-loss rates are upper limits for the following

reason. The radiation Ðeld in the Lyman continuum is often
found to be highly suppressed compared to blackbody
emission or stellar photospheric Ñuxes, or it may even be
absent (Polidan, Mauche, & Wade 1990 ; Long et al. 1991,
1994 ; van Teeseling, Verbunt, & Heise 1993 ; Knigge et al.
1997). This drastic reduction in ionizing Ñux allows a
reduction in the electron density and, therefore, in the mass-
loss rate from the disk, while maintaining the sameM0 ,
degree of ionization in the wind.

On the other hand, a reasonable lower limit to the wind
mass-loss rate from luminous CV disks was found by Prinja
& Rosen (1995). They argued that the product where qM0 q,
is the ionization fraction of C IV, lies between 5 ] 10~13 and
1 ] 10~11 yr~1 for 10 dwarf novae and nova-like vari-M

_
ables with high-resolution IUE spectra (see also Mauche &
Raymond 1987 ; Hoare & Drew 1993). This results in a
lower limit of yr~1. Note that thisM0 D 5 ] 10~13 M

_
value is still model dependent to some degree, since Prinja
& Rosen assumed a constant ionization fraction through-
out the wind and a purely radial Ñow.

In this paper, we focus on the mass-loss rate and the
velocity law of disk LDWs in CVs. We employ the main
assumption of Paper I that the wind streamlines are con-
tained in straight cones, the collimation angles of which are
eigenvalues of the Euler equation. This approximation is
acceptably close to the disk (e.g., as shown by PSD) and
allows us to make a meaningful determination of the mass-
loss rate (which is constrained close to the disk photosphere
as well) and of the initial velocity law. A similar conclusion
was reached from line Ðtting using two-dimensional wind
kinematics (Vitello & Shlosman 1993 ; Knigge et al. 1995).
On the other hand, we expect both the centrifugal forces
and the polar component of the line force to bend the
streamlines at large distances from the disk and to inÑuence
the terminal velocity of the Ñow.

This paper is organized as follows. Section 2 reviews the
mass-loss rates derived from the theory of Castor, Abbott,
& Klein (1975, hereafter CAK). Section 3 shows that CV
disk winds are expected to have low optical depth even in
strong lines. Sections 4 and 5 derive the mass-loss rates and
velocity laws for the disk wind model. Sections 6 and 7
discuss and summarize our results.

2. CAK MASS-LOSS RATES FOR STARS AND CV DISKS

The CAK line force for stellar winds is fully determined
by two parameters, the power exponent a and the mass
absorption coefficient of the strongest driving line, i

0
(Paper I ; Puls, Springmann, & Lennon 1999). Instead of
using directly, CAK parameterize the line force per uniti

0
mass as where M(t) 4 kt~a (with 0 \ a \ 1) isg

L
\ M(t)g

e
,

the so-called force multiplier, and is the force caused byg
e

electron scattering. The optical depth t refers to a line with
where is the electron scattering coefficient. Thei \ p

e
, p

e

parameter k is given in terms of byi
0

k \
!(a)

1 [ a

v
th
c

Ai
0

p
e

B1~a
, (1)

where !(a) is the complete gamma function, c is the speed of
light, and is the thermal speed of carbon ions (CAK) orv

th
hydrogen (Abbott 1982). The above parameterization for
M(t) as a power law, however, does not account correctly
for optically thin winds, where the force multiplier saturates
at some value for a gas of solar com-M

max
(t) 4 Q D 2000

position (Abbott 1982). Gayley (1995) noted that Q is essen-
tially identical to the Q-value of a resonator and can be
estimated as Q D A l/c, where A D 10~4 is the abundance
of valence electrons, l D 1015 s~1 is the frequency of UV
radiation, and c D 108 s~1 is the damping rate. Hence,
Q D 1000 should be an appropriate value for O stars.
However, for winds from B stars near the main sequence,
modeling of X-ray spectra already suggests that appropriate
Q-values di†er from those for O stars. The mass-loss rates
inferred from the standard theory can be substantially lower
than the inferred ones (Cassinelli 1994 ; Cassinelli et al.
1994).

In terms of Q, is given by (Gayley 1995)i
0

i
0

v
th

p
e
c

\ !(a)~*1@(1~a)+Q . (2)

Inserting the eigenvalue from equation (8b) in Paper IE
cr

into equation (6) thereof, the CAK mass-loss rate from
O-star winds takes the compact form,

M0 \
a

1 [ a

A Q !

1 [ !

B(1~a)@a L

c2
, (3)

with luminosity L and the Eddington factor !. This expres-
sion is valid as long as Q !/(1 [ !) [ 1. Otherwise, the
gravity prevails and no wind solution exists. For the above
value of Q, and assuming and an Eddington factora \ 2

3! \ 0.5 of an O supergiant, equation (3) gives M0 D 90L /c2.
Thus, the mass-loss rate from the CAK theory agrees well
with the estimate from the single scattering limit, M0 \

for typical wind terminal speeds(c/v
=

)(L /c2) D 100L /c2,
km s~1. However, agreement between bothv

=
D 3000

mass-loss rates is solely the result of ! being close to unity.
If, alternatively, ! > 1, the CAK mass-loss rate falls well

below the single scattering limit. As we show in ° 3, the mass
loss of a disk LDW is given again by equation (3), up to
correction factors of order unity. Even for the brightest
CVs, i.e., nova-like variables and dwarf novae in eruption,
which experience LDWs, Q! D 1 (applying the O-star
value of Q). Hence, from equation (3), whereas theM0 D L /c2
single scattering limit gives L /c2, for kmM0 D 60 v

=
D 5000

s~1. Since in thin LDWs the probability for a photon to be
scattered by a line is less than unity, the estimate from the
single scattering is way too high (see also Puls, Springmann,
& Owocki 1998).

3. DISK WIND OPTICAL DEPTHS

A number of fundamental di†erences exist between stellar
and disk LDWs in CVs, some of which have been discussed
in Paper I. Here we show that optical depths for CV winds
are more typical of thin winds, e.g., of B stars near the main
sequence, than of more extensive supergiant winds.
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3.1. Disk W ind Geometry and Radiation Field

The disk wind geometry is described in Paper I, and we
repeat here only the essential assumptions and make neces-
sary deÐnitions. A Ñow streamline is a helix that is con-
tained within a straight cone (Fig. 1). The footpoint radius
of a streamline in the disk is the tilt of the cone with ther

0
,

disk is j, and x is the distance along the cone. We neglect
pressure forces and assume that the azimuthal velocity is
determined by angular momentum conservation above the
disk and by Keplerian rotation within the disk. The only
remaining velocity component is which points upwardv

x
,

along the cone. We introduce a normalized coordinate X 4
The velocity V is normalized to the local escape speed,x/r

0
.

and the Ñow acceleration becomes W @ \ dW /dX \ 2V
dV /dX. Last, we introduce the radiation Ñux F above the
disk and the Ñux normalized to the footpoint Ñux of theF3
streamline, as well as their projected counterparts andF

x
F3

x
along the wind cone (° 3.2 of Paper I).

3.2. Semitransparent W inds from CV Disks?

In this section, we make use of a simpliÐed Euler equa-
tion for the disk LDW to show explicitly that low ! factors
in CV disks imply low optical depths in the wind. By doing
so, we neglect factors of order unity from the angle integra-
tion in equation (2) of Paper I, in replacing the optical
depth, in arbitrary direction by the optical depth inqc, cü
Ñow direction, For the sake of simplicity, only theqc \ q

x
.

disk with (hereafter termed ““ Newtonian ÏÏ disk) isF P r
0
~2

considered. The line force per unit mass is then

g
L
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p
e
F

x
(r
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) \
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e
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(r

0
, X)M(t

x
) . (4)

The Euler equation for the disk wind, in the limit of zero
sound speed, and neglecting the force caused by electron
scattering because of small ! above the disk, becomes (with
gravitational constant G, white dwarf mass dimen-M

wd
,

sional wind speed andv
x
, v

x
@ \ dv

x
/dx),

v
x
v
x
@ \ [

GM
wd

r
0
2

[g(X) [ !(r
0
)F3

x
(r

0
, X)M(t

x
)] , (5)

where the e†ective gravity g was deÐned in equation (9) of
Paper I, and we introduced

!(r
0
) 4

p
e
F

z
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0
, 0)r

0
2

cGM
wd

. (6)

For the Newtonian disk, !(r
0
) \ p

e
L

d
/[4ncGM

wd
becomes independent of Here, is the diskln (r

d
/r

wd
)] r

0
. L

d
luminosity, and and are the outer and inner disk radii,r

d
r
wd

FIG. 1.ÈAdopted Ñow geometry for a CV disk wind. The streamlines
are helical lines and are assumed to lie on straight cones.

with being the white dwarf radius. Using typical param-r
wd

eters for nova-like CVs, andL
d
\ 10 L

_
, M

wd
\ 0.7 M

_
,

one has that ! ^ 10~4.r
d
/r

wd
\ 30,

For a stationary wind solution to exist, the right-hand
side of equation (5) has to be positive. This poses a con-
straint on M(t) and therefore on t. Namely, the maximum of
reduced gravity g lies between 2/(3 ] 31@2) ^ 0.38 for
j \ 90¡ and 4/27 ^ 0.15 for j \ 0¡. Since is of orderF3

x
unity (see Fig. 5 in Paper I), M(t) approaches its maximum
value, Q, in regions of large gravity and stays constant
thereafter. In other words, because ! is so small for CV
disks, the wind solution barely ““ makes it ÏÏ over the gravity
hill.

This saturation e†ect in M(t) happens when the strongest
driving line in the wind becomes optically thin, at about
t D 10~7. If this thick-to-thin transition occurs before or at
the critical point of the Ñow, the wind solution is lost. This
possibility cannot be excluded in our model given the rapid
change of the velocity gradient (and hence of t) in the vicin-
ity of the critical point. The consequences of this e†ect on
the feasibility of LDWs are discussed in ° 6.

The situation is fundamentally di†erent for dense winds
of O stars, where the Euler equation for the radial wind
speed, reads (with M being the stellar mass)v

r
,

v
r
v
r
@ \ [

GM

r2

A
1 [ ![M(t) ] 1]

B
. (7)

Assuming ! [ 0.1 for O stars, there is a wide range in M(t)
for a stationary solution to exist, namely D10È2000. The
highest mass-loss rate solution (hence, the slowest wind) is
characterized by the lowest allowable M(t) D 10. The per-
mitted range in M(t) corresponds to an even wider range in
t (because a \ 1), t D 10~7 to 10~3. We further quantify
these arguments in the Appendix.

Our estimate for t in CV winds contradicts the claim by
Murray & Chiang (1996) that the optical depth parameter t
is similar for CV disk and O-star winds.

4. DISK WIND MASS-LOSS RATES

4.1. Vertical Disk W ind

The mass-loss rate of the vertical wind above an isother-
mal disk is determined by the eigenvalue inE

cr
equation (18b) in Paper I. From equation (17) in Paper I,
one Ðnds

M0 \
a

1 [ a

A3J3cp
e
Q

8nGM
wd

B(1~a)@a
D
AL
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c2

B1@a
. (8)

The dimensionless constant D is given by
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r2 dr
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, (9)

where and are the inner and outer radii of the windr
1

r
2

base in the disk, respectively. Making the plausible assump-
tions that and (both of the latterr

d
? r

wd
, r

2
? r

1
, r

2
^ r

d
radii are determined essentially by the temperature drop-
ping below 104 K), we estimate D ^ 1 for anda \ 1

2
a \ 2

3
.

Introducing a new, global disk Eddington factor,
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d
\

p
e
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d
4ncGM

wd

, (10)
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FIG. 2.ÈMass-loss rate per disk annulus, as function of foot-dM0 /dr
0
,

point radius, Table 1 and eq. (17) from Paper I were used for SHS andr
0
.

Newtonian disks with and Dotted lines are Ðts witha \ 2
3

a \ 1
2
.

(SHS) and (Newtonian). The curves are normal-dM0 /dr
0

P r
0
~1.9 Pr

0
~0.8

ized at r
0
/r

wd
\ 10.

equation (8) becomes

M0 ^
a

1 [ a

A3J3

2
Q!

d

B(1~a)@a L
d

c2
. (11)

Up to the correction factors caused by di†erent gravity (and
geometry), this equation is identical to the CAK mass-loss
rate from a point star, equation (3). Note that a disk wind is
more efficient in carrying mass loss than an O-star wind by
a factor of [(3 ] 31@2)/2](1~a)@a, owing to the lower gravity
potential well. Rewriting equation (11) as M0 4 NL

d
/c2

(where the coefficient N depends on and using the rele-L
d
),

vant parameters for nova-like CVs introduced above, gives
N ^ 2 and a disk mass-loss rate yr~1 forM0 ^ 10~12 M

_
Q \ 2000.

4.2. T ilted Disk W inds

A more realistic picture of disk mass loss consists of a
tilted wind from a disk with radial temperature stratiÐ-
cation. From equation (17) in Paper I, using equation (10),
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, (12)

where
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(13)

and is normalized in units of mass loss from a verticalm5 (r
0
)

wind ; is then a normalized mass-loss rate perSm5 T dr
0
,

averaged over the wind base. Using values of fromm5 (r
0
)

Table 1 in Paper I, we estimate for andSm5 T \ 1.2 a \ 2
3
,

for both for SHS and Newtonian disks.Sm5 T \ 2.2 a \ 1
2
,

For the latter, one has ThisD \ ln (r
2
/r

1
)/[ ln (r

d
/r

wd
)]1@a.

expression is roughly correct also for the SHS disk, where D
cannot be calculated analytically. Inserting the values for

and D into equation (12), one Ðnds, for andSm5 T a \ 1
2

and for SHS and the Newtonian disks, assuminga \ 2
3
,

once again typical parameters for nova-like CVs and
Q \ 2000, that N ^ 2 or yr~1.M0 ^ 10~12 M

_
Interestingly, the mass-loss rates for a vertical wind

above an isothermal disk and for tilted winds above disks
with temperature stratiÐcation are very similar. This means
that the disk mass-loss rate is only a weak function of the
tilt angle, as long as the latter is aligned with the radiation
Ñux. For the disk types used in the present work, this range
encompasses j D 50¡È90¡, according to Table 1 in Paper I.

It is readily shown that the mass-loss rate for an LDW
due to a single, optically thick line is roughly TheL

d
/c2.

above N ^ 2, therefore, implies that only a few lines become
optically thick in the present CV disk wind model. Unlike
for disk winds, in O-star winds of the order of 100 lines
become optically thick, according to equation (3).

Note that in Paper I, eigenvalues E were derived without
including the saturation of the force multiplier at M

max
(t) \

Q (i.e., without applying the exponential line-list cuto† of
Owocki, Castor, & Rybicki 1988). The above mass-loss
rates are, therefore, upper limits.

Finally, we derive the dependence of the mass-loss rate
on According to equation (17) in Paper I, this rela-dM0 r

0
.

tion is determined by the disk temperature stratiÐcation
and the run of with For an isothermal disk, wasE

cr
r
0
. E

cr
found to be independent of hencer

0
, dM0 /dr

0
P r

0
(2~a)@a.

Such an unrealistic growth of with radius is a con-dM0 /dr
0

sequence of the increase of radiation energy with For ther
0
.

Newtonian disk, Figure 2 shows according todM0 /dr
0

Table 1 and equation (17) in Paper I. A good power-law Ðt
to the eigenvalues is given by fordM0 /dr

0
P r

0
~0.8 r

0
Z 5r

wd
.

The total disk mass-loss rate therefore scales roughly as
For the SHS disk, Figure 2 gives approximatelyM0 P ln r

2
.

for hence, the total shoulddM0 /dr
0

P r
0
~1.9 r

0
Z 5r

wd
; M0

depend on only very weakly. At the radialr
2

r
0

[ 5r
wd

,
dependency of is weak for both types of disks.dM0 /dr

0
Therefore, the mass-loss rate is centrally concentratedÈM0
and more so for SHS disks.

5. VELOCITY LAWS FOR DISK WINDS

We discuss the wind velocity law by solving the Euler
equation, Ðrst neglecting, then accounting for ionization
e†ects in the Ñow. Only the Ñow above the SHS disk is
analyzed in this section.

5.1. Solutions to the Algebraic Euler Equation

The geometrical expansion terms, discussed in ° 5.1 of
Paper I, introduce a velocity dependency into the wind
Euler equation. However, we Ðnd that these terms leave the
mass-loss rates in the model practically unchanged and
increase the wind velocity by at most 10%. The reason for
this is the small angle dispersion in the wind streamlines.
Therefore, we omit geometrical expansion terms here.

Without explicit dependence on velocity, the Euler equa-
tion becomes purely algebraic. Figure 8 of Paper I displays
the solutions W @(X) of the Euler equation (20) thereof for a
tilted disk wind at di†erent The velocity Ðeld above ther

0
.

disk is obtained by integrating W @ and is displayed for a
number of streamlines in Figure 3 for the SHS disk and

As shown in Paper I, the LDW velocity law is nota \ 2
3
.

necessarily a monotonic function of X. Clearly, the deceler-
ation regime (marked with a cross in Fig. 3) is unimportant
for streamlines starting at large because it lies at large Xr

0
,
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FIG. 3.ÈVelocity proÐles for the SHS disk with forr
d
\ 30r

wd
, a \ 2

3
,

and at footpoint radii 3, 7, 10, ( from bottom to top). The dotted lines15r
wd

are Ðts using the velocity law eq. (14), with the values of given in(X
acc

; b)
brackets. The velocity V is in units of the local escape speed at For ther

0
.

tilt angles, eigenvalues from Paper I were used. Triangles mark thej
cr

critical point, and crosses mark the point where the wind starts to deceler-
ate.

where the Ñow moves much faster than the local escape
speed. The inner streamlines do show a more pronounced
kink.

The wind terminal velocities are found to be independent
of for and linearly dependent on forr

0
, a \ 1

2
, r

0
a \ 2

3
,

growing by a factor of 5 over the whole disk. However, this
may be of academic interest only, since the wind is expected
to go through an optically thick-to-thin transition before-
hand. Hence the actual observable terminal velocities may
be smaller.

The velocity proÐles in Figure 3 are well approximated
by the empirical velocity law used by Shlosman & Vitello
(1993) in Ðtting the line proÐles of nova-like CVs,

v \ v
=

(X/X
acc

)b
1 ] (X/X

acc
)b

. (14)

Here, is the acceleration length scale along the windX
acc

cone. We Ðnd the best Ðts to Figure 3 for b \ 1.5È1.9.
Vitello & Shlosman quote rather similar values of b \ 1.3È
1.5. Furthermore, in Figure 3, which means thatX

acc
B 1

the footpoint radius sets the acceleration length. Ther
0

reason for this is that is determined by the e†ectiveX
acc

gravity and disk radiation Ðeld, i.e., by the auxiliary func-
tions g and f (Paper I), which change on length scales Dr

0
.

For this reason, we do not expect to depend on a. TheX
acc

from observed P Cygni line proÐles are usually foundX
acc

to be larger, namely, in the range 1È10 (Hoare & Drew
1993 ; Vitello & Shlosman 1993), depending on individual
objects. We comment further on this in ° 6.3.

5.2. E†ects of Ionization StratiÐcation in the W ind

The major concern of the present model is the small
optical depth in the wind, making the latter semitransparent

even in the strongest driving lines, when Q \ 2000 is used.
The resolution of this problem may be related to the ioniza-
tion structure in the wind, which is expected to lead to a
more shallow velocity law and smaller velocity gradients.
We parameterize the ionization stratiÐcation in the simplest
possible way by introducing the d([0) parameter custom-
arily used in stellar wind theory (e.g., Abbott 1982), namely,

g
L

P t~am~d , (15)

where is the ionization parameter, J is them 4 J/n
e

frequency-integrated mean intensity, and is the electronn
e

number density. Higher ionization stages typically harbor
fewer lines than lower ionization stages and therefore lead
to a smaller line force. Typical values for O stars are d [ 0.1
(Abbott 1982 ; Puls 1987 ; Pauldrach et al. 1994), but values
as large as d \ 0.7 have been suggested recently for winds at
low e†ective temperatures of 8000 K (Kudritzki et al. 1998).

To include the d-correction term in the present model, we
calculate Ðrst dJ from a disk annulus of radius q and width
dq, using cylindrical coordinates r and z,

dJ(r, z) \ 4I(q, 0)q dqz
Jq2 ] r2 ] z2 [ 2rq

(q2 ] r2 ] z2)2 [ (2rq)2

] E
2

C
[

4rq

(q [ r)2 ] z2

D
, (16)

where I is the isotropic, frequency-integrated intensity, and
is the complete elliptical integral of the second kindE

2
(Abramowitz & Stegun 1965, p. 590). For the temperature
stratiÐcations of interest, this expression for dJ cannot be
integrated analytically over q to give J. Resorting to a one-
dimensional numerical integration, Figure 4 shows J and F
as function of X for the SHS disk at a representative r

0
.

Importantly, for the outer wind, the critical point lies
upstream of the maximum of both J and F. Since J
increases along the streamline while the electron density
drops, m increases all the way to the critical point, as in
O-star winds. The line force at the critical point is, therefore,

FIG. 4.ÈNormalized, projected Ñux (solid line) and mean intensity
(dashed line) above the SHS disk along a ray with footpoint(r

d
\ 30r

wd
)

andr
0

\ 10r
wd

j
cr

\ 58¡.
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smaller for d [ 0 than for d \ 0, and the same is true for the
mass-loss rate. Alternatively, in the unlikely situation that
the wind recombines along the streamline, the driving force
as well as the mass loss would increase because of a larger
number of metal transitions.

To understand the e†ect of ionization stratiÐcation on
the wind velocity law, we include the d-correction above the
critical point but neglect it below the same, thereby leaving
the mass-loss rate unaltered. Since the d-term introduces a
dependence of the line force on W besides that on W @, the
solution to the Euler equation has to be iterated until con-
vergence is achieved.

We Ðnd that, assuming and d \ 0.2, terminala \ 2
3

speeds decrease by a factor of D2 for outer regions of the
SHS disk, whereas the optical depth t increases by a factor
of D4, thereby pushing the solution further away from the
cuto† at t D 10~7. For inner disk regions, the e†ect of d on

and t is less pronounced. The somewhat ambivalentv
=

conclusion is, therefore, that d-terms may, as desired, raise t
by a factor of a few but, at the same time, also lead to an
unwanted reduction in terminal speeds.

6. DISCUSSION

In this section, we compare the mass-loss rates from our
model with values quoted in the literature, which are typi-
cally estimated from P Cygni line Ðts or from dynamical
wind modeling. We also mention brieÑy some processes
neglected in this work that may have an e†ect on M0 .

6.1. Comparison with from Kinematical W ind ModelingM0

The most reliable estimates for mass-loss rates from CVs
are, so far, from P Cygni line Ðts. For nova-like variables
with parameters similar to those considered here, Vitello &
Shlosman (1993) and Knigge et al. (1995) Ðnd a lower limit
of D10~2 to the ratio of massÈloss to accretion rates. Below
this value, the observed line proÐles cannot be reproduced
because the wind becomes overionized. This is about 2
orders of magnitude larger than derived in ° 4, whenM0
Q \ 2000 is used as in O stars. It is important, however,
that a highly idealized blackbody disk spectrum was used in
the line Ðtting. This is a clear overestimate of the ionizing
radiation in the Lyman continuum (Polidan et al. 1990 ;
Long et al. 1991, 1994 ; van Teeseling et al. 1993 ; Knigge et
al. 1997). For a more realistic radiation Ðeld that accounts
for the Lyman cuto†, the wind mass-loss rate can be
reduced while maintaining the same ionization parameter.

As is shown in Figure 5, we have been able to reproduce
acceptable P Cygni line proÐles down to M0 D 10~11 M

_
yr~1 for a generic wind model. We use the Lyman cuto†
and a tail of high-energy X-rays to account for carbon ion-
ization. Essentially, all the carbon is then in the form of C IV

because of Auger ionization of C II by X-rays. For M0
D 10~12 yr~1, on the other hand, the emission com-M

_
ponent in the calculated line proÐle is missing, which is in
disagreement with observations (Fig. 5).

6.2. Comparison with from Dynamical W ind ModelingM0

Next, we compare the mass-loss rates from our analytical
wind model with those from dynamical simulations of disk
winds. The only realistic dynamical modeling of CV disk
winds attempted so far was performed by PSD. We have
provided a general comparison between our model and
theirs in Paper I and turn here to mass-loss rates.

FIG. 5.ÈSynthetic P Cygni line proÐles for an LDW from a disk with
suppressed Lyman continuum. The wind mass-loss rate is D10~11 M

_
yr~1 (solid line) and D10~12 yr~1 (dashed line).M

_

Using k \ 0.2 and a \ 0.6, PSD Ðnd for the SHS disk
mass-loss rates of yr~1 andM0 \ 5 ] 10~14 M

_
M0 \ 5

] 10~12 yr~1, corresponding to disk luminosities ofM
_

and respectively. It is clear that suchL
d
\ 8 L

_
L

d
\ 24 L

_
,

an increase by a factor of 100 in cannot be understoodM0
from the simple CAK scaling, Instead, this strongM0 P L1@a.
dependence on is a consequence of the optically thick-to-L

d
thin transition in the disk LDW when Q ! D 1, as is also
discussed by Proga (1999). Since PSD apply an exponential
line-list cuto† (Owocki et al. 1988), the force multiplier M(t)
reaches a maximum in optically thin Ñow regions. This sup-
presses the mass-loss rate as compared with the case of a
pure power-law force multiplier.

Even for a low-luminosity disk, PSD Ðnd that large M0
can be driven, namely when a is as large as 0.8. However,
PSD assume the same value of k \ 0.2 for all a. As is
evident from Figure 4 of Gayley (1995), k drops by a factor
of 10 when a is increased from 0.6 to 0.8, leading to a very
similar in both cases. This is a consequence of Q! D 1 forM0
a disk wind (see eq. [12]). Contrary to this, for O-star winds,
Q! ? 1 ; hence, depends strongly on a.M0

For a more luminous disk with we estimateL
d
\ 24 L

_
,

yr~1 from equation (12) when a valueM0 ^ 4 ] 10~12 M
_

of D is used characteristic of the narrow wind base of PSD.
The agreement with yr~1 as found byM0 \ 5 ] 10~12 M

_
PSD is very good.

6.3. T he Mass-L oss Paradigm in Disk W inds from CV s

Analysis of LDWs from O stars revealed Q! to be the key
parameter determining the mass-loss rate in the wind
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(Gayley 1995). Namely, for Q! \ 1, the wind ceases to exist.
For O stars, Q! [ 100, producing a kind of a ““ safety belt.ÏÏ
The situation is di†erent for winds from luminous CV disks,
where Q! D 1, if the O-star value for Q is used (this work
and PSD).

Taken at face value, the modiÐed CAK theory of LDWs
from CV disks predicts therefore surprisingly low mass-loss
rates if Q \ 2000. The calculated rates of M0 D 10~12 M

_
yr~1 for or even lower, when the saturation ofL

d
\ 10 L

_
,

the force multiplier is accounted for, imply that LDWs will
have a thick-to-thin transition in the strongest driving lines
and will have difficulties in reproducing the observed line
proÐles. What are the possible solutions to this problem?

First, higher values of Q are the most obvious way to
increase in the wind. The value of Q is rather uncertain. ItM0
is especially unclear how the di†erent spectral shape of the
disk radiation Ðeld and its e†ect on the non-LTE
occupation numbers will modify Q as compared with its
O-star value. Such calculations have never been attempted
and are clearly beyond the scope of this paper. Theoreti-
cally, the value of Q can be signiÐcantly larger than that for
the O stars.

Second, a situation could arise in disk winds where the
wind is driven by photons from a part of the disk that is UV
bright, while the ionization is controlled by the central disk
region, e.g., the boundary layer, which is X-ray bright. This,
again, will be especially pronounced in the presence of a
Lyman-continuum cuto† in the UV source. Under these
circumstances, given the wind overionization, the line force
will be reduced below its CAK value (MacGregor, Hart-
mann, & Raymond 1979 ; Fransson & Fabian 1980) and,
hence, the velocity gradient will be small as well. A shallow
velocity law will increase the overall optical depth in the
wind and push the thick-to-thin transition downstream,
away from the critical point. It is important in this context
that the observed small changes in the P Cygni line proÐles
in eclipsing nova-like CVs require very shallow velocity pro-
Ðles in the wind (Shlosman, Vitello, & Mauche 1996).

Additional factors can a†ect the mass-loss rates to a
lesser degree. (1) Allowing for streamlines to bend will result
in a better alignment with the radiative Ñux vector, which
should increase the mass loss. (2) Pauldrach & Puls (1990)
Ðnd a sudden increase in stellar mass-loss rates of B super-
giants when the Lyman continuum becomes optically thick
at the wind base, e.g., when the e†ective temperature drops
below a certain threshold or if ! reaches some critical value.
This induces a shift to lower wind ionization, which, in turn,
increases the mass loss (more driving lines), increases the
Lyman jump even more, and so on, until a stable situation
with high and low wind ionization is reached. (3) Fur-M0
thermore, Q depends linearly on the wind metallicity, and
enhanced metal abundances could lead to a larger Q !,

which governs the mass loss. This is particularly signiÐcant
to the He abundance because of the efficient convection in
the low-mass secondary stars but may be relevant to metals
as well.

7. SUMMARY

The focus of this second paper on line-driven winds from
accretion disks in cataclysmic variables is on theoretical
estimates of mass-loss rates and wind velocity laws. Our
results are as follows.

The mass-loss rates derived from applying the modiÐed
CAK formalism appear to be substantially smaller than
those inferred from P Cygni line Ðts, even with a suppressed
Lyman continuum, and are more so when the saturation
e†ect in the line-force multiplier is included. Yet these rates
are in good agreement with results from time-dependent,
two-dimensional dynamical wind simulations by PSD. The
reason for low mass-loss rates is that the key parameter
controlling LDWs, Q! D 100 for O-star winds, is only D1
for disk winds when O-star values for Q are used. Some
potential resolutions to this problem were proposed.

We Ðnd that the mass loss is dominated by the inner
decade in disk radii. For Shakura & Sunyaev and Newto-
nian disks, the mass loss per unit radius is roughly uniform
out to Ðve white dwarf radii and drops and atPr

0
~1.9 r

0
~0.8

larger respectively. Because of their low mass-loss rates,r
0
,

CV disk winds should experience a thick-to-thin transition
even in the strongest driving lines. These winds should,
therefore, resemble more closely winds of B stars near the
main sequence than that of O supergiants.

The wind velocity proÐles show a slowly accelerating
Ñow, with a characteristic acceleration length given by the
footpoint radius of the streamline in the disk. Fitting the
observed line proÐles using kinematical models suggests
even slower accelerating winds. The observable terminal
velocity of the wind is associated with the thick-to-thin
transition in the driving lines. Given this latter fact, and
given uncertainties in the ionization stratiÐcation and in the
anticipated streamline bending at large radii, the actual
wind terminal velocity is poorly constrained in our model.
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06546.02-95A and AR-07982.01-96A (I. S.), and was per-
formed under the auspices of the US Department of Energy
by LLNL user contract number W-7405-ENG-48 (P. V.).

APPENDIX

DISK EDDINGTON FACTORS REQUIRED FOR LINE-DRIVEN WINDS

Using the eigenvalues from Paper I, one can further quantify the disk Eddington factors required to launch a line-drivenE
cr

wind that is optically thick at least up to the critical point. Consider Ðrst a vertical wind above an inÐnite, isothermal disk. The
Euler equation (5) becomes, for (the Ñux component along normalized to the footpoint Ñux),F3

x
\ 1 xü ,

W @ \ [g ] !(r
0
)M(t

x
) . (A1)
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From equation (18) in Paper I, at the critical point,

!(r
0
) \

2/3J3

(1 [ a)M
cr

(t)
. (A2)

Since the maximum of M(t) for a gas of solar composition is D2000 (Abbott 1982), one has that for all!(r
0
) Z 4 ] 10~4 r

0
.

Next, for the more realistic case of a tilted wind above a disk with radial temperature stratiÐcation, the simpliÐed Euler
equation (5) reads

W @ \ [g ] !(r
0
) F3

x
M(t

x
) . (A3)

Using and assuming for critical points close to the disk,W
cr
@ \ (a/1 [ a)g

cr
g
cr

^ X
cr

!(r
0
) \

X
c

(1 [ a)F3
x
(r

0
, X

cr
)M

cr
(t)

. (A4)

According to Figure 5 in Paper I, hence, is required for the wind to be optically thick at the critical point.F3 \ 4 ; !(r
0
) Z 10~4
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ABSTRACT
Line-driven winds from hot stars and accretion disks are thought to follow a unique, critical solution that

corresponds to a maximum mass-loss rate and a particular velocity law. We show that in the presence of negative
velocity gradients, radiative-acoustic (Abbott) waves can drive shallow wind solutions toward larger velocities
and mass-loss rates. Perturbations that are introduced downstream from the critical point of the wind lead to a
convergence toward the critical solution. By contrast, low-lying perturbations cause evolution toward a mass-
overloaded solution, developing a broad deceleration region in the wind. Such a wind differs fundamentally from
the critical solution. For sufficiently deep-seated perturbations, overloaded solutions become time-dependent and
develop shocks and shells.
Subject headings: accretion, accretion disks — galaxies: active — hydrodynamics —

novae, cataclysmic variables — stars: mass loss — stars: winds, outflows

1. INTRODUCTION

Atmospheres of hot luminous stars and accretion disks in
active galactic nuclei and in cataclysmic variables form exten-
sive outflows because of the super-Eddington radiation fluxes
in UV resonance and subordinate lines. An understanding of
these winds is hampered by the pathological dependence of the
driving force on the flow velocity gradient. Castor, Abbott, &
Klein (1975, hereafter CAK) found that line-driven winds
(LDWs) from O stars should follow a unique, critical state that
corresponds to a maximum mass-loss rate. The equation of
motion for a one-dimensional, spherically symmetric, poly-
tropic outflow that is subject to a Sobolev line force allows for
two infinite families of so-called shallow and steep solutions.
However, none of these families can provide for a global so-
lution alone. Shallow solutions do not reach infinity, while steep
solutions do not extend into the subsonic regime, including the
photosphere. The critical wind starts then as the fastest shallow
solution and switches at the critical point in a continuous and
differentiable manner to the slowest steep solution. Hence, the
critical point and not the sonic point determines the bottleneck
in the wind. This description, in principle, applies equally to
winds from stars and accretion disks.

A physical interpretation of the CAK critical point was given
by Abbott (1980), who derived a new type of radiative-acoustic
wave (hereafter Abbott waves). These waves can propagate
inward, in the stellar rest frame, only from below the CAK
critical point. Above the critical point, they are advected out-
ward. Hence, the CAK critical point serves as an information
barrier, much like the sonic or Alfvén points in thermal and
hydromagnetic winds. Abbott’s analysis was challenged by
Owocki & Rybicki (1986), who found that for a pure absorption
LDW, the signal speed is the sound speed and not the much
faster Abbott speed. As noted already by these authors, this
should be the consequence of assuming pure line absorption,
which does not allow for any radiatively modified, inward-
wave mode. Meanwhile, there is ample evidence for Abbott
waves in time-dependent wind simulations (Owocki & Puls
1999).

Shallow solutions fail to reach infinity because they cannot

perform the required spherical expansion work, implying that
the flow starts to decelerate. Since this usually occurs very far
out in the wind, the local wind speed is much larger than the
local escape speed, and the wind escapes to infinity. Thus, a
simple generalization of the CAK model, allowing for flow
deceleration, renders shallow solutions globally admissible.
This raises a fundamental question of why the wind would
adopt the critical solution at all, and attain the critical mass-
loss rate and velocity law, as proposed by CAK.

In this Letter, we analyze the physical mechanism that drives
shallow solutions toward the critical solution, and we discuss
under what conditions this evolution does not terminate at the
CAK solution but continues into the realm of overloaded so-
lutions. We find that, so far, simulations were affected by the
numerical runaway toward the critical solution, by not ac-
counting for Abbott waves in the Courant time step.

2. ABBOTT WAVES

Abbott waves are readily derived by bringing the wind equa-
tions into characteristic form. We consider a one-dimensional
planar wind of velocity and density , assumingv(z, t) r(z, t)
zero sound speed. The continuity and Euler equations are, re-
spectively, as follows:

r r v

1 v 1 r = 0, (1)
t z z

a
v v v/z

E { 1 v 1 g(z) 2 CF(z) = 0. (2)( )
t z r

Here and are the gravity and the radiative flux, re-g(z) F(z)
spectively. The CAK line force is given by ′ ag { CF(z)(v /r)l

(with ), with constant C and exponent . The′
v { v/z 0 ! a ! 1

unique stationary CAK wind, , is found by re-v (z), r (z)crcr

quiring a critical point at some . The number of solutionsz cr

for changes from 2 to 1 at (which is a saddle point);′
vv (z) z cr

hence, holds. Writing C in terms of critical point′
E/(vv ) = 0cr
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quantities, the Euler equation becomes

v v F(z)
2a 2(12a)

1 v 1 g(z) 2 a (1 2 a)
t z F(z )cr

a
v/z12a a# g(z ) (r v ) = 0. (3)cr cr cr ( )

r

Note that for stationary planar winds, is constant. If, inrv

addition, g and F are taken to be constant with height and if
is replaced by , with a normalized mass-loss rate′ ′ ˙r v v /r vv /mcr cr

, one finds that E no longer depends explicitlyṁ { rv/r vcr cr

on z for stationary solutions. Hence, is independent of z,′
vv

too. This implies that is ill-defined and that every point ofz cr

the CAK solution is a critical point. CAK removed this de-
generacy by introducing gas pressure terms. Here we take a
different approach and assume . A situation with2g = z/(1 1 z )
roughly constant radiative flux and gravity showing a maximum
at finite height could be encountered above isothermal disks
around compact objects (see Feldmeier & Shlosman 1999). The
critical point is determined by the regularity condition,

; hence, , and the critical point coincides withdE/dz = 0 z = 1cr cr

the gravity maximum. For simplicity, we also choose 1a = 2
from now on, which is reasonably close to realistic values of

(Puls, Springmann, & Lennon 2000). None of our results2a ≤ 3
should depend qualitatively on the assumptions made so far.
The Euler equation is

v v v/zÎ Î1 v 1 g(z) 2 2 g r v = 0, (4)cr cr cr
t z r

where . The stationary solutions for wind accel-g { g(z )cr cr

eration are given by

2
˙g mg(z)cr′ Îvv (z) = 1 5 1 2 , (5)[ ]ṁ gcr

where the plus and minus signs refer to steep and shallow
solutions, respectively. For , shallow and steep solutionsṁ ≤ 1
are globally (i.e., everywhere) defined. For , solutions areṁ 1 1
called overloaded, and they become imaginary in the neigh-
borhood of the gravity maximum. These winds carry mass-loss
rates that are too large, and they eventually stagnate.

Next we put the Euler equation into quasi-linear form, which
does not mean that we linearize it. Differentiating E with re-
spect to z (Courant & Hilbert 1962; Abbott 1980) and intro-
ducing , equations (1) and (4) become, respectively,f { v/z

 
1 v r 1 rf = 0, (6)( )

t z

  f 1 g
1 (v 1 v ) 1 = 0, (7)A[ ]

t z r r z

with the inward Abbott speed in the rest frame, {vA

2 . In the WKB approximation, individual spatial′ 1/2˙(g v/mv )cr

and temporal variations are much larger than the inhomoge-
neous term in equation (7), and so the term can be ne-′g /r
glected. Consequently, is a Riemann invariant propagating′

v /r
at characteristic speed . Perturbations of correspond′

v 1 v v /rA

to the amplitude of a wave propagating at phase speed v 1

. Note that is proportional to the Sobolev line optical′
v v /rA

depth, indicating that this wave is a true radiative mode.

The second characteristic is determined by the continuity
equation (6). In the advection operator in parentheses, has tov

be read as in the zero sound speed limit. This outward-v 1 0
propagating invariant corresponds to a sound wave, with am-
plitude r scaling with gas pressure.

At the critical point, and after equa-′ṁ = 1 vv (z ) = g(z )cr cr

tion (5); hence, [where we introducedv = 2v v {A, cr cr A, cr

]. Abbott waves stagnate at the critical point, analogousv (z )crA

to the sound waves at the sonic point. For shallow solutions,
and from equation (5); hence, .′ ′ṁ ! 1 vv ! v v v 1 v ! 0cr cr A

Shallow LDW solutions are therefore the subcritical analog to
solar wind breezes.

Because, in the rest frame, the inward Abbott mode can
propagate at larger absolute speeds than the outward sound
mode, Abbott waves can determine the Courant time step in
time-explicit hydrodynamic simulations. Violating the Courant
step results in numerical instability. Despite this fact, Abbott
waves along shallow solutions were never considered in the
literature.

3. WIND CONVERGENCE TOWARD THE CRITICAL SOLUTION

We turn our attention to the physical mechanism that can
drive LDWs away from shallow solutions and toward the crit-
ical one. Starting from an arbitrary shallow solution as the
initial condition, we explicitly introduce perturbations at some
fixed location in the wind and study their evolution. In order
to keep unperturbed shallow solutions stable in numerical sim-
ulations, we fix one outer boundary condition, according to
inward-propagating Abbott waves. A constant mass-loss rate
at either the outer boundary condition or the nonreflecting
boundary condition (Hedstrom 1979) serves this aim. At the
inner, subcritical boundary, we also fix one boundary condition,
according to incoming sound waves. Nonreflecting boundary
conditions and give similar results.r = const

Wind convergence toward the critical solution is then trig-
gered by negative flow velocity gradients. Allowing for ′

v !

turns the inward Abbott mode of phase speed in0 v 1 v ! 0A

the rest frame into an outward-propagating mode. This is read-
ily seen for a line force that is zero for negative , i.e., when′

v

all photons are absorbed at a resonance location between the
photosphere and the wind point. The Euler equation is sim-
plified to that for an ordinary gas, with characteristic speed

in the zero sound speed limit. At the other extreme,v 2 0 1 0
for a purely local line force in which the unattenuated stellar
or disk radiation field reaches the wind point, .′ 1/2g ∝ (FvF)l

Here the Abbott phase speed is found to be , withv 1 v v =A A

for .′ ′1/2˙1 (2g v/mv ) v ! 0cr

Consider then a sawtooth-like velocity perturbation (a sinu-
soidal perturbation leads to similar results). Slopes prop-′

v 1 0
agate inward, and slopes propagate outward. Hence, as′

v ! 0
a kinematical consequence, a sawtooth that is initially sym-
metric with respect to the underlying stationary velocity law
evolves toward larger velocities. This is demonstrated in Fig-
ure 1, where, in the course of time, a periodic sawtooth per-
turbation is introduced at . The line force is assumed toz = 2
be proportional to , and the initial shallow solution has′ 1/2(FvF)

. The figure shows 2 perturbation cycles. For upward-1ṁ = 0.8 2
pointing kinks, the slopes propagate apart, and a flat velocity
law develops between them. At each time step dt, a new in-
crement ( and T being the amplitude and pe-dv = 4 dt dv/T dv

riod of the sawtooth, respectively) is added at ; hence,z = 2
the flattening velocity law does not show up in region A of
Figure 1. Overall, the wind speed at the perturbation site
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Fig. 1.—Top: Evolution of a shallow wind during 2 periods of a sawtooth1
2

perturbation of amplitude, with 10% being introduced at . Regions “A”z = 2
and “B” correspond to phases in which upward- and downward-pointing kinks,
respectively, are introduced into the flow. Bottom: Stable Abbott wave exci-
tation in the critical wind, at 35% perturbation amplitude.

Fig. 2.—Wind evolution toward a stationary, overloaded solution showing
an extended decelerating region. A periodic sawtooth perturbation is introduced
into a shallow solution at , upstream from the critical point at .z = 0.8 z = 1cr

evolves toward larger values during these phases. On the other
hand, for downward-pointing kinks of the sawtooth, 2 , thedv

two approaching slopes merge, and the wind speed evolves
back toward its unperturbed value after each decrement
2 . The wind velocity hardly evolves duringdv = 24 dt dv/T
these phases (see region B of Fig. 1). Over a full perturbation
cycle, the wind speed clearly increases.

Essentially, any perturbation that introduces negative will′
v

accelerate the wind. The amplitude of the perturbation is rather
irrelevant since, with decreasing perturbation wavelength, neg-
ative occur at ever smaller amplitudes. However, in more′

v

realistic winds, dissipative effects may smear out short-scale
perturbations before they can grow. Details of the physical
mechanism will be discussed elsewhere.

If the perturbation lies downstream from the critical point,
the wind converges toward the critical solution. Namely, as
soon as the perturbation site comes to lie on the supercritical
part of the CAK solution during its evolution, positive velocity
slopes propagate outward and combine with negative slopes
to a full wave train. No information is propagated upstream.
This unconditional stability of the outer CAK solution is shown
in the bottom panel of Figure 1.

4. WIND CONVERGENCE TOWARD OVERLOADED SOLUTIONS

Wind runaway toward larger speeds, as caused by pertur-
bations introduced upstream from the critical point, does not
terminate at the critical CAK solution. For low-lying pertur-
bations, communication with the wind base is still possible
once the subcritical branch of the CAK solution is reached.
The wind gets further accelerated into the domain of mass-
overloaded solutions (where , and hence for′ ′

vv 1 v v v 1 vcr cr cr

according to eq. [5]) until a generalized critical pointz ! z cr

develops, which prevents the inward propagation of Abbott
waves and the adjustment of the mass-loss rate. Such gener-
alized critical points are given by “termination” points ofz t

overloaded solutions, where the velocity becomes imaginary.
At , the number of real solutions changes from 2 (shal-′z vv (r)t

low and steep) to 0. Hence, termination points are defined by
the same condition as the CAK critical point (at which the
number of solutions changes from 2 via 1 to 2), ′

E/(vv ) =t

. From the stationary version of equation (4), ; hence,0 v = 2vA, t t

Abbott waves stagnate at termination points, and the latter be-
come generalized critical points.

The fact that perturbations with negative accelerate the′
v

wind to either a critical or an overloaded state can be cast into
the black hole conjecture (Penrose 1965): an LDW avoids a
“naked” base by enclosing it with a critical surface.

Since to each there corresponds a unique, supercriticalz t

mass-loss rate, the latter is determined by the perturbation lo-
cation alone. Using , one finds for a˙v = 2v m = g /g 1 1t cr tA, t t

planar wind with constant radiative flux.
At a termination point, jumps to the decelerating branch,′

vv

. Beyond a well-defined location above the gravity max-′
vv ! 0
imum, the super-CAK mass-loss rate can again be lifted by the
line force, and jumps back to the accelerating branch. Hence,′

vv

two stationary kinks occur in the velocity law. Figure 2 shows
a hydrodynamic simulation of the evolution toward an over-
loaded solution. Sawtooth-type velocity perturbations were in-
troduced at . Correspondingly, for the over-˙z = 0.8 m = 1.025
loaded solution, using .2g = z/(1 1 z )

Future work has to clarify whether or not LDWs show deep-
seated perturbations. It seems unlikely, however, that they
would occur at a unique location. Hence, overloaded winds
should be nonstationary and should show a range of super-
critical mass-loss rates.

More fundamentally, time-dependent overloaded solutions
occur already for single, unique perturbation sites once these
sites lie below a certain height. For the present wind model,



L128 RUNAWAY OF LINE-DRIVEN WINDS Vol. 532

this is at . The overloading is then so severe and thez ≈ 0.66
decelerating region so broad that negative wind speeds result
(see Poe, Owocki, & Castor 1990). The corresponding mass-
loss rates are still only a few percent larger than the CAK
value. The gas that falls back toward the photosphere collides
with the outflowing gas, and a time-dependent situation de-
velops. Within each perturbation period, a shock forms in the
velocity law, supplemented by a dense shell. These shocks and
shells propagate outward (A. Feldmeier & I. Shlosman 2000,
in preparation).

Although strong perturbations introducing negative velocity
gradients can appear already in O star winds, accretion disk
winds are the prime suspects. The reasons for this are that
accretion processes and their radiation fields in cataclysmic
variables and galactic nuclei are intrinsically variable on a range
of timescales (Frank, King, & Raine 1992) and that disk LDWs
are driven by a combination of uncorrelated, local, and central
radiation fluxes.

5. SUMMARY

We find that shallow solutions to line-driven winds are sub-
critical with respect to Abbott waves (sub-Abbottic). These
waves cause shallow solutions to evolve toward larger speeds
and mass-loss rates because of the asymmetry of the line force
with regard to positive and negative velocity gradients and
because perturbations with opposite signs of propagatedv/dz
in opposite directions. Steep velocity slopes propagate toward
the wind base, steepen the inner wind, and lift it to higher
mass-loss rates. In the presence of enduring wind perturbations,
this proceeds until a critical point forms and Abbott waves can
no longer penetrate inward.

The resulting solution does not necessarily correspond to the

CAK wind. For perturbations that originate below the critical
point, the developing Abbott wave barrier is found to be the
termination point of a mass-overloaded solution. The velocity
law acquires a kink at the termination point, where the wind
starts to decelerate. Whether the wind converges to a critical
or an overloaded solution depends entirely on the location of
perturbations and not, e.g., on the boundary conditions at the
wind base.

If Abbott waves are not accounted for in the Courant time
step of hydrodynamic simulations, we find that numerical run-
away can drive the solution toward the critical CAK wind. A
detailed discussion of this will be given elsewhere.

Future work has to clarify whether and where the pertur-
bations causing the local flow deceleration, , can occurdv/dz ! 0
in LDWs. Overloaded winds may be detected observationally.
While their mass-loss rates should still be close to CAK values,
broad regions of decelerating flow could be identified in
P Cygni line profiles. Furthermore, besides the shocks from
the line-driven instability (Lucy 1982; Owocki, Castor, & Ry-
bicki 1988), the shocks occurring in overloaded solutions with
infalling gas may contribute to the X-ray emission from LDWs.
Note that the present wind runaway occurs already in the lowest
order Sobolev approximation and is therefore unrelated to the
line-driven instability that depends on velocity curvature terms
(Feldmeier 1998).

We thank R. Buchler, J. Drew, R. Kudritzki, C. Norman,
S. Owocki, and J. Puls for intense blackboard discussions and
the referee, Stan Owocki, for suggestions that improved
the manuscript. This work was supported in part by PPA/G/S/
1997/00285, NAG5-3841, WKU-522762-98-6, and HST GO-
08123.01-97A.
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ABSTRACT

Line-driven winds from stars and accretion disks are accelerated by scattering in numerous line tran-
sitions. The wind is believed to adopt a unique critical solution out of the inÐnite variety of shallow and
steep solutions. We study the inherent dynamics of the transition toward the critical wind. A new
runaway wind mechanism is analyzed in terms of radiative acoustic (Abbott) waves, which are
responsible for shaping the wind velocity law and Ðxing the mass loss. Three di†erent Ñow types result
depending on the location of perturbations. First, if the shallow solution is perturbed sufficiently far
downstream, a single critical point forms in the Ñow, which is a barrier for Abbott waves, and the solu-
tion tends to the critical one. Second, if the shallow solution is perturbed upstream from this critical
point, mass overloading results, and the critical point is shifted inward. This wind exhibits a broad, sta-
tionary region of decelerating Ñow, and its velocity law has kinks. Third, for perturbations even further
upstream, the overloaded wind becomes time-dependent and develops shocks and dense shells.

Subject headings : accretion, accretion disks È hydrodynamics È instabilities È stars : mass loss È
waves

1. INTRODUCTION

Radiation-driven winds that are accelerated by absorp-
tion and reemission of continuum photons in spectral lines
form an interesting class of hydrodynamic Ñows, termed
line-driven winds (LDWs). They occur in OB and Wolf-
Rayet stars and cataclysmic variables and probably in
active galactic nuclei and luminous young stellar objects.
These winds are characterized by a unique dependence of
line force on the velocity gradient in the Ñow. This causes a
new, radiative wave type.

The nature of these waves (hereafter Abbott waves) was
Ðrst discussed by Abbott (1980), who found two modes, a
slow, acoustic one propagating downstream and a fast,
radiative one propagating upstream. The critical point
found by Castor, Abbott, & Klein (1975, hereafter CAK)
from analysis of the stationary Euler equation is a barrier
for these waves, the same as the sonic point is to sound
waves. The intriguing property of Abbott waves is that they
propagate downstream slower than the sound speed, while
they propagate upstream at very large speeds, highly super-
sonically. The latter fact reÑects essentially the radiative
nature of Abbott waves.

No such upstream-propagating radiative mode was
found by Owocki & Rybicki (1986), who calculated the
GreenÏs function for winds driven by pure line absorption.
The explanation is that the pure absorption case suppresses
the radiative upstream mode since photons can propagate
only downstream. The radiative upstream mode returns
when line scattering is included (Owocki & Puls 1999).

The question arises for the physical interpretation of
Abbott waves. Do they represent a physical entity that is

1 JILA Visiting Fellow.
2 Permanent address : Department of Physics and Astronomy, Uni-

versity of Kentucky, Lexington, KY 40506-0055.

responsible for shaping the Ñow by communicating essen-
tial Ñow properties between di†erent points in the wind? In
particular, could Abbott waves be the prime cause for evol-
ution of LDWs toward a CAK-type, steady state solution?

The analysis by CAK of the steady state Euler equation
for LDWs has revealed an inÐnite family of mathematical
solutions but only one, hereafter the ““ critical solution,ÏÏ that
extends from the photosphere to arbitrary large radii. Other
solutions do not reach either inÐnity or the photosphere.
The former solutions are called shallow and the latter ones,
steep. The unique, critical wind starts as the fastest shallow
solution and switches smoothly to the slowest steep solu-
tion at the critical point.

The shallow wind solutions found by CAK are the analog
to solar wind breezes in that they are sub-Abbottic every-

where. They were abandoned by CAK because they cannot
provide the required spherical expansion work at large
radii. This exclusion of shallow solutions can be criticized in
di†erent respects : (1) The breakdown happens only around
300 stellar radii, where basic assumptions of the model
(Ñuid description, spherical symmetry, isothermality) may
become invalid. (2) Shallow solutions could be extended to
inÐnity by jumping at some large radius to a decelerating
wind branch. The latter was excluded a priori by CAK.
However, this jump can occur beyond a few stellar radii,
where the wind has already reached its local escape speed.
(3) For models of disk LDW, even the critical solution itself
does not extend to inÐnity and becomes imaginary beyond
a certain radius (Feldmeier & Shlosman 1999). Jumps to the
decelerating branch are unavoidable then.

With shallow solutions being valid stationary solutions,
the following question arises : what forces the wind to adopt
the critical CAK solution? Numerical aspects of this ques-
tion have been discussed by Feldmeier, Shlosman, &
Hamann (2001), who noted that outer boundary conditions
and a Courant time step that do not account for Abbott

385
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waves can set o† numerical runaway, often toward the criti-
cal solution.

In the present paper, we focus on a physical interpreta-
tion of Abbott waves, extending our previous work on this
subject (Feldmeier & Shlosman 2000). We show that these
waves are the prime driver of evolution of LDWs toward a
unique, steady state solution characterized by a speciÐc
velocity law and mass-loss rate. In particular, we Ðnd that
since this is the case for solar wind breezes, shallow solu-
tions can evolve because of waves that propagate upstream
to the wind base (the photosphere). As a new e†ect in
LDWs, Abbott waves ““ drag ÏÏ the solution in one preferred
direction, toward larger velocities. The wind becomes stable
when a critical point forms, through which outer pertur-
bations can no longer penetrate inward.

2. ABBOTT WAVES

2.1. W ind Model

Only wind acceleration due to a line force in Sobolev
approximation for radiative transfer is considered in this
paper. The large number of lines driving the wind is dealt
with using a CAK line distribution function. The latter is
characterized by a power-law index a, which lies between 0
and 1. The Sobolev force is proportional to

g
l
D
P

du nI
n
q
n
~a , (1)

where n is the unit vector pointing in the direction of the
surface angle element du, I is the frequency-integrated spe-
ciÐc intensity, and q is the Sobolev optical depth,

q
n
\

iov
th

n Æ [n Æ ($¿)]
, (2)

with rate-of-strain tensor mass absorption coefficient i,+¿,
and ion thermal speed The force proportionality con-v

th
.

stant is Ðxed later in terms of the critical solution. Through
the line force depends on the streamline geometry. To+¿,

simplify, we take q in equation (1) out of the integral and
replace it by an average or equivalent optical depth in one
direction. SpeciÐcally, the latter is assumed to be the Ñow
direction. This approach corresponds to the CAK ““ radial
streaming approximation.ÏÏ For a planar Ñow with height
coordinate z, the line force becomes, assuming constant i
and v

th
,

g
l
D F(v@/o)a , (3)

where v@ \ Lv/Lz and the radiative Ñux F is a function of z.
Even this highly idealized line force depends in a nonlinear
way on the hydrodynamic variables v@ and o.

So far, the following assumptions were introduced : (1) the
line force is calculated in Sobolev approximation using (2) a
CAK line distribution function (without line overlap) and
(3) applying the radial streaming approximation for (4)
planar Ñow. To these, we add the following further assump-
tions : (5) The Ñux F is constant with z, but gravity g may
depend arbitrarily on z. This can serve to model winds from
thin, isothermal accretion disks, in which case g grows Ðrst
linearly with z and at large distances drops o† as z~2. Alter-
natively, with F and g being constants, one can model the
launch region of a stellar wind, but a well-known degener-
acy occurs here (Poe, Owocki, & Castor 1990). (6) Zero
sound speed is assumed, a \ 0, and (7) we Ðx Notea \ 1

2
.

that the Sobolev line force is independent of and there-v
th

fore of a. LDWs are hypersonic, and except near the photo-
sphere, gas pressure plays no role. The one-dimensional
continuity and Euler equations are

Lo

Lt
] v

Lo

Lz
] o

Lv

Lz
\ 0 , (4)
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Lz
] g(z) [ C

0
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SLv/Lz
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\ 0 , (5)

with constant We consider Ðrst stationary solutions,C
0
.

ov \ const. A normalized quantity is intro-m \ ov/o
c
v
c

duced, where and are the density and velocity lawo
c
(z) v

c
(z)

of the critical wind, respectively, which is deÐned below.
Besides m, a second, new hydrodynamic variable, w@ \ vv@, is
deÐned, and the Euler equation becomes

w@ ] g(z) [ CJw@/m \ 0 . (6)

The Ñux F was absorbed into the constant C. At each z,
equation (6) is a quadratic equation in with solutionsJw @,

Jw@ \
1

2Jm
(C ^ JC2 [ 4gm) . (7)

The velocity law v(z) is obtained from w@ by quadrature.
Solutions for which the minus (plus) sign applies are termed
shallow (steep). If m \ 1 (see below), shallow and steep solu-
tions exist from z \ 0 to O. If m [ 1, shallow and steep
solutions become imaginary in a certain z interval. In this
region, the line force cannot balance gravity g.D C/Jm

Within the family of shallow wind solutions, the mass Ñux
ov increases monotonically with terminal speed, while for
steep solutions, the trend is opposite. The largest mass Ñux
that keeps the solution everywhere real deÐnes the critical
wind Setting the square root in equation (7) to 0m

c
\ 1.

implies for C

C \ 2Jg
c

, (8)

where means gravity at the critical point of theg
c
\ g(z

c
)

critical solution. How is found? Di†erentiating the sta-z
c

tionary Euler equation E[z, w@(z)] \ 0 with respect to z and
using at the critical point (crossing of solutions),LE/Lw

c
@ \ 0

one Ðnds

0 \
dE

dz
c

\
dg

dz
c

. (9)

Hence, the critical point coincides with the gravity
maximum. This is not an accident but expresses that the
critical point lies at the bottleneck of the Ñow, as for a Laval
nozzle (Abbott 1980). If the Ñux F varies with z, the gener-
alized area function depends also on F, and the critical
point no longer coincides with the gravity maximum (see
Feldmeier & Shlosman 1999 for examples). If g \ const, the
critical point degenerates, and every point in the Ñow
becomes critical. In stellar wind calculations, the correct
critical point location is found by including the Ðnite cone
correction factor for the stellar disk as an ““ area ÏÏ function
(Pauldrach, Puls, & Kudritzki 1986 ; Friend & Abbott
1986).

The wind solution becomes

w@ \
g
c

m

A
1 ^

S
1 [

mg

g
c

B2
. (10)
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At the critical point, shallow and steep solutions with m \ 1
merge in such a way that the slope in passing from one to
the other is continuous. Staying instead on either shallow or
steep solutions introduces a discontinuity in Discon-v@@(z

c
).

tinuities in derivatives of hydrodynamic variables, termed
weak discontinuities, lie on Ñow characteristics (Courant &
Hilbert 1968). Characteristics are the space-time trajectories
of wave phases. Indeed, we Ðnd below that the critical point
is a barrier for Abbott waves.

It is at this point that the following question arises : which
solution does the wind adoptÈa shallow, steep, or critical
one? This issue will be resolved by discussing runaway of
shallow solutions. We shall Ðnd that Abbott waves are the
prime driver of this evolution.

2.2. GreenÏs Function

We derive the GreenÏs function for Abbott waves in
Sobolev approximation. The GreenÏs function gives the
response of a medium to a localized delta function pertur-
bation in space and time and is complementary to the har-
monic dispersion analysis of Abbott (1980) and Owocki &
Rybicki (1984). Since localized perturbations contain many
harmonics, a GreenÏs function describes wave interference.
This is clearly seen for surface water waves, whose GreenÏs
function is known from Fresnel di†raction in optics (Lamb
1932, p. 386). For simplicity, we consider only a single, opti-
cally thick line, with Sobolev force (a 4 1),

g
l
\ A

Lv

Lz
. (11)

Density o was absorbed into the constant A. We assume
WKB approximation to hold (slowly varying background
Ñow) and consider velocity perturbations only. The charac-
teristic analysis in the next section will show that the Abbott
wave amplitude is v@/o ; hence, Abbott waves are not annihi-
lated by this restriction to velocity perturbations. The lin-
earized Euler equation for small perturbations is

L

Lt
dv(z, t) \ dg

l
(z, t) \ Adv@(z, t) . (12)

The GreenÏs function problem is posed by specifying as
initial conditions

dv(z, 0) \ d(z [ z
0
) . (13)

Multiplying equation (12) by e~ikz and integrating over z,
we get

L

Lt
dv(k, t) \ ikAdv(k, t) , (14)

where a bar indicates Fourier transforms, dv \ / dve~ikz dz.
The right-hand side was obtained by integration by parts,
assuming dv([O, t) \ dv(O, t) \ 0. This is shown a poste-
riori. The solution of equation (14) is

dv(k, t) \ beikAt , (15)

with constant b. Fourier transforming equation (13) from z
to k space,

dv(k, 0) \ e~ikz0 \ b , (16)

and

dv(k, t) \ eik(At~z0) . (17)

Fourier transforming back to z space, we get

dv(z, t) \
1

2n

P
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=
dk eikzeik(At~z0) \ d(z [ z

0
] At) . (18)

Therefore, the initial delta function propagates without dis-
persion toward smaller z at an Abbott speed [A. Further-
more, dv \ 0 at z \ ^O, as assumed. Since no wave
dispersion occurs, the same Abbott speed A is also obtained
by considering harmonic perturbations. Inserting dv \

in equation (12) gives as phase and group speeddvei(kz~ut)

u

k
\

du

dk
\ [A . (19)

The GreenÏs function G is deÐned by (F an arbitrary
function)

F(z, t) \
P
~=

=
dz@G(z [ z@, t)F(z@, 0) . (20)

From equations (13) and (18),

G(z, t) \ d(z ] At) , (21)

a result Ðrst obtained by Owocki & Rybicki (1986).
The present case of optically thick lines only corresponds

to a \ 1. An explicit expression for the Abbott speed is not
relevant then : opposed to all cases a \ 1, a \ 1 poses no
eigenvalue problem for m. We return therefore to a \ 1

2
.

2.3. Abbott Wave Characteristics

Besides a harmonic and GreenÏs function analysis, a char-
acteristic analysis can be given for Abbott waves. The latter,
especially, is not restricted to linear waves. Inserting C from
equation (8), the equations of motion (eqs. [4] and [5])
become (dots indicate time derivatives)

o5 ] vo@ ] ov@ \ 0 , (22)

v5 ] vv@ ] g(z) [ 2!
Sv@

o
\ 0 , (23)

where we introduced the constant

! \ Jg
c
o
c
v
c

. (24)

To bring these equations into characteristic form, we Ðrst
write the continuity equation formally as K(o, v) \ 0 and
the Euler equation as E(o, v) \ 0. For nonlinear, Ðrst-order
systems of partial di†erential equations, K \ 0 and E \ 0,
in two unknown variables o and v, the latter being functions
of coordinates t and z, the characteristic directions or
speeds a are determined by (Courant & Hilbert 1968, p. 304)

K [ aKo5 ] Ko{
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] K

v{
[ aEo5 ] Eo{

[ aE
v5
] E

v{

K
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where etc. We use the symbol a,Ko{
\ LK/Lo@, E

v5
\ LE/Lv5 ,

hitherto reserved for the sound speed, also for characteristic
speeds. The meaning should be clear from the context.
Inserting K and E in equation (25), we get;[a ] v
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o

[ a ] v [
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Jov@
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\ 0 ;
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hence,

a
`

\ v, a
~

4 A \ v [
!

Jov@
, (27)

in the observers frame. The Abbott speed is again denoted
A. In the comoving frame, anda

`
\ 0 a

~
\ [!/(ov@)1@2.

The downstream (positive) slow wave mode corresponds to
sound waves. The upstream (negative) fast mode is of radi-
ative origin.

A simple, heuristic argument can be given for the
occurrence of Abbott waves. Consider a long-scale pertur-
bation of a stationary velocity law. At the node where the
velocity gradient gets steepened, the Sobolev line force
increases. The gas is accelerated to larger speeds ; hence, the
node shifts inward. Similarly, the node where the velocity
law becomes shallower shifts inward. The node shift corre-
sponds to phase propagation of a harmonic wave.

Next, we bring the equations of motion into character-
istic form. To this end, the Euler equation is quasi-
linearized by di†erentiating it with respect to z (Courant &
Hilbert 1968), introducing a new, fundamental variable
f \ v@,

f 5 ] vf @ ] f 2 [
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B
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Rebracketing and multiplying with o,

of 5 ] oAf @ ] of 2 ]
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Using the continuity equation,
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The Euler equation in characteristic form is therefore
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with A from equation (27). We assume that WKB approx-
imation applies, i.e., that the temporal and spatial deriv-
atives on the left-hand side are individually much larger
than the right-hand side ; hence, the latter can be neglected.
In a frame moving at speed [A, the function v@/o is con-
stant and can be interpreted as a wave amplitude. Note that
v@/o is inversely proportional to the Sobolev line optical
depth, indicating that Abbott waves are indeed a radiative
mode.

Introducing f in the continuity equation puts it into char-
acteristic form,

(L
t
] vL

z
)o \ [fo . (32)

Here, fo is an inhomogeneous term. WKB approximation
cannot be assumed here since f may vary on short scales.
The wave amplitude o is no longer constant along v charac-
teristics but changes according to this (ordinary) di†erential
equation. Since gas pressure p scales with density, this equa-
tion shows that the outward mode corresponds to sound.

For stationary winds, the Abbott speed in the observers
frame becomes (a \ 1

2
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since from equations (7) and (8). With thew
c
@ \ g

c
A

c
\ 0,

critical point is a stagnation point for Abbott waves. For
shallow winds, m \ 1 and hence, A \ 0 andw@/w

c
@ \ 1 ;

Abbott waves propagate upstream from any z to the photo-
sphere located at z \ 0. Shallow solutions are, therefore,
sub-Abbottic and are the analog to solar wind breezes. For
steep solutions, from equation (10). Hence,(mw@/w

c
@ )1@2 [ 1

A [ 0, and steep solutions are super-Abbottic. Once the
wind has adopted a steep solution, the Ñow can no longer
communicate with the wind base : steep solutions cannot
evolve by means of Abbott waves.

2.4. Negative Velocity Gradients

A surprising result occurs when we allow for negative
velocity gradients, v@ \ 0, somewhere in the wind. This cor-
responds to Ñow deceleration, not necessarily to accretion
instead of wind. The Sobolev force is blind to the sign of the
velocity gradient. All that is important is the presence of a
velocity gradient to Doppler-shift ions out of the absorption
shadow of intervening ions. Hence, a natural generalization
of the Sobolev line force is

g
l
\ 2!

S o v@ o
o

. (34)

This holds for a purely local force. However, if v@ \ 0, the
velocity law is nonmonotonic, and multiple resonance loca-
tions occur. Radiative transfer is no longer local since
photons are absorbed and scattered at di†erent locations.
The incident Ñux is no longer determined by the photo-
spheric Ñux F alone, but forward and backward scattering
has to be accounted for. The constant C becomes frequency-
and velocity-dependent. Rybicki & Hummer (1978) intro-
duced a generalized Sobolev method for nonmonotonic
velocity laws in which the radiation Ðeld is found by iter-
ation. This introduces interesting, nonlocal e†ects into
Abbott wave propagation (action at a distance). We post-
pone such an analysis to a future paper and proceed here in
a simpler fashion. Together with the oppositeg

l
D o v@ o1@2,

extreme 0)]1@2 is treated. In the latter force, allg
l
D [max (v@,

radiation is assumed to be absorbed at the Ðrst resonance
location, where necessarily v@ [ 0. The line force according
to Rybicki & Hummer (1978) lies in between these two
extremes.

Repeating the above steps for these generalized line
forces, the Euler equation maintains its characteristic form,
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with Abbott speed A \ v [ !/(1/2ov@) for v@ [ 0 and
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l
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(35)

for v@ \ 0. Therefore, if the velocity gradient is negative,
Abbott waves propagate downstream, with a positive (or
zero) comoving frame velocity along all solution types,
whether shallow, steep, or critical. This is peculiar since
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Abbott waves appeared so far as upstream mode. (Note that,
for 0)]1@2, the line force drops out of the Eulerg

l
D [max (v@,

equation if v@ \ 0. Both wave modes become ordinary
sound then.) We conclude that regions with v@ \ 0 cannot
communicate with the wind base.

3. ABBOTT WAVE RUNAWAY

3.1. Method

In the remainder of the paper, we study wave propaga-
tion in LDWs numerically using a standard time-explicit
Eulerian grid code (van Leer advection on staggered grids).
NonreÑecting Riemann boundary conditions for Abbott
waves are used (Feldmeier et al. 2001). As an inner bound-
ary, z \ 0.1 is chosen to avoid negative speeds when Abbott
waves leave the mesh at the wind base ; numerical artifacts
may result when the v characteristic changes its direction.
For gravity, we assume g \ z/(1 ] z2), with a maximum at
z \ 1. Since g and z are normalized, so are v and t. Steep
solutions are of no further interest here since they are super-
Abbottic and, therefore, numerically stable. Furthermore,
since they start supersonically at the wind base, they are
unphysical. We are left with shallow winds, which can
evolve toward the critical solution by means of Abbott
waves. Shallow solutions are numerically unstable if pure
outÑow boundary conditions are used. The mechanism of
this runaway is not easy to analyze because of numerical
complications in the vicinity of the boundary, where the
nature of the di†erence scheme changes.

To clearly separate e†ects of boundary conditions from
wave dynamics, we introduce controlled, explicit pertur-
bations in the middle of the calculational domain.

3.2. Mechanism of the Runaway

Figure 1 demonstrates the result derived above, that posi-
tive and negative velocity slopes propagate in opposite
directions. The initial conditions are a shallow velocity law

FIG. 1.ÈEvolution of a triangular wave train in a shallow wind (dotted
line). For clarity, the velocity law is plotted with a negative, vertical o†set
that increases with time. The dashed lines show the shallow solution with
m \ 1 and the critical solution.

that is perturbed by a triangular wave train. The subsequent
evolution of this wave train follows from the kinematics of
the velocity slopes. In strictly mathematical terms, the pla-
teaus that form in Figure 1 correspond to centered rarefac-
tion waves. We postpone such an analysis to a forthcoming
paper. The essential result from the Ðgure is that the wind
speed in the sawtooth evolves asymmetrically, toward
larger values.

T he whole sawtooth pattern moves upstream as an Abbott
wave. This is of a prime importance for our understanding
of the observed runaway.

Namely, if a perturbation is fed into the wind contin-
uously over time, the whole inner wind is eventually lifted
toward larger speeds and mass-loss rates. The same is true
for the outer wind, Ðrst directly by the runaway and,
second, as a consequence of the accelerated inner gas propa-
gating outward.

We consider a coherent sinusoidal velocity perturbation
of period P and maximum amplitude S, which is fed into the
Ñow at a Ðxed location z. The fundamental hydrodynamic
variables used in the code are o and ov. After each time step
dt, perturbations

ov ] ov ] odv, o ] o(1 [ dv/ o A o ) , (36)

with

dv \ dt
2nS

P
cos

A2nt

P

B
(37)

are applied to ov and o on a single mesh point. The density
Ñuctuations follow from the continuity equation do/
o B [dv/ o A o . For linear waves, the observers frame
Abbott speed is A B [1.05 at for m \ 0.8.z

e
\ 2

For sufficiently small amplitudes S, v@ remains positive,
and Abbott waves propagate in a stable fashion toward the
wind base. This is shown in the left-hand panel of Figure 2
for P \ 1 and S \ 0.04. Doubling the perturbation ampli-
tude to S \ 0.08 implies wind runaway toward the critical
solution, as is shown in the right-hand panel of Figure 2.
The wind converges to m \ 1 everywhere (not shown).
Instead of adopting the critical, accelerating branch, the
velocity law jumps at to the decelerating branch.z [ z

e
This is even true for the converged, stationary solution as
t ] O. (The velocity slope is so mildly negative for t ] O
that the wind speed is almost constant above Wez

e
\ 2.)

add some further remarks on this issue below.
The runaway results from the occurrence of negative

velocity gradients. During excitation phases during which
v@ \ 0, the resulting line force perturbations are not suffi-
ciently negative to compensate for positive line force pertur-
bations during phases where v@ [ 0. Net acceleration of the
wind results over a full excitation cycle as a consequence.

Figure 3 shows again the runaway time series of Figure 2,
with subsequent snapshots displaced vertically for clarity.
During the negative perturbation half-cycle, nega-[dv(z

e
),

tive velocity slopes propagate outward from below andz
e

merge with positive slopes propagating inward from above
The merging slopes mutually annihilate. After a timez

e
.

P/2, the velocity law is left largely unaltered in presence of
the perturbation. This causes the dense spacing of curves in
Figure 2, especially at once every perturbation cycle.z [ z

e
,

On this rather Ñat velocity law, a positive perturbation ]dv
is added during the next half-cycle. Here, inner, positive
slopes propagate inward and separate from outer, negative
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FIG. 2.ÈL eft : Stable Abbott wave propagation along a shallow velocity law. A sinusoidal perturbation with amplitude S \ 0.04 and period P \ 1 is
applied at Right : Abbott wave runaway if the amplitude is doubled to S \ 0.08.z

e
\ 2.

slopes, which propagate outward. Obviously, runaway is
caused by positive perturbations, but its deeper origin is
that negative perturbations are self-annihilating and cannot
balance positive ones.

The runaway terminates when comes to lie on thez
e

critical solution and Abbott waves can no longer propagate
inward.

FIG. 3.ÈRunaway time series from Fig. 2, shown with a constant verti-
cal displacement between snapshots. The dashed lines show phases where
negative velocity perturbations are applied at leading to self-z

e
,

annihilating slopes.

The velocity gradient at is then still negative and inz [ z
e

most of our simulations remains negative at all times : at z
e
,

the wind jumps to the decelerating branch with m \ 1,
which causes a kink in v(z). Runaway perturbations above

would be required to establish a critical, acceleratingz
e

velocity law in the outer wind. For certain combinations of
model parameters, we Ðnd instead a critical solution with
v@ [ 0 over the whole mesh. The near plateau above z

A
evolves then toward larger speeds, and the velocity kink
propagates outward, eventually leaving the mesh. We
believe that this is an artifact caused by boundary-induced
numerical runaway (Feldmeier & Shlosman 2000). The
latter can even occur when nonreÑecting Abbott boundary
conditions are used, via non-W KB (standing?) waves ; our
Riemann boundary conditions were formulated to annihi-
late WKB waves only. We prefer the situation v@ \ 0 for

over any numerical runaway that would assist thez [ z
e

present, physical runaway in reaching the critical solution.
A future analysis of outer boundary conditions has to
clarify this issue of the outer wind velocity law.

We can still test the stability of the full, critical solution,
as is done in Figure 4. Above the critical point, perturbation
phases with v@ [ 0 and v@ \ 0 combine here and propagate
outward as a smooth, marginally stable Abbott wave.

3.3. Stationary Overloaded W inds

So far, we assumed that wind perturbations are located
above the critical point. We consider now the opposite case,
z
e
\ z

c
.

Figure 5 shows the wind velocity law resulting from a
perturbation location on the critical solution. Az

e
\ 0.8

period P \ 0.3 was chosen. A stationary wind with a broad
deceleration region v@ \ 0 develops. Abbott waves propa-
gate outward from through the decelerating wind. Sincez

e
the CAK critical point, which is the bottleneck of the Ñow,
lies in the deceleration regime, the present solution should
be overloaded. Indeed, the mass-loss rate is found to be
m \ 1.05.
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FIG. 4.ÈCritical CAK solution, stable with respect to Abbott waves
excited above the critical point. Perturbation phases with positive and
negative v@ combine to an outward propagating, harmonic Abbott wave.

This result is readily understood. The Ñow at is stillz
e

sub-Abbottic because Runaway to larger v occursz
e
\ z

c
.

until inward propagation from becomes impossible. Thez
e

velocity at is then everywhere larger than the criticalz \ z
e

speed. The runaway stops when the inward Abbott speed

FIG. 5.ÈVelocity law for a wind with harmonic perturbation at z
e
\

below the critical point The wind converges to a stationary,0.8, z
c
\ 1.

overloaded solution. The dotted line shows the initial conditions, the criti-
cal CAK solution.

becomes zero in the observers frame. We are interested in a
stationary solution ; hence, A \ 0 in equation (33), implying

The square root in equation (10) has to vanishmw@ \ g
c
.

then, hence m \ g
c
/g.

So far, we restricted ourselves to and m \ 1, butg \ g
c

critical points can also occur along overloaded solutions. In
this case, and the square root in equationm \ g

c
/g(z

c
) [ 1,

(10) becomes imaginary at Remember that refersz [ z
e
. g

c
to gravity at the critical point of the critical solution, which
is the maximum of g. Hence, for any other pos-g(z

c
) \ g

c
sible critical point. The perturbation site stops communi-z

e
cating with the wind base only when it becomes a critical
point itself. At the overloaded wind jumps to the deceler-z

e
,

ating branch, resulting in a kink in the velocity law. This
kink has all the attributes of a critical point. Especially, as
an Abbott wave barrier, it shuts o† communication with the
wind base.

It is easily seen that a critical point at would implyz \ z
e

that is already super-Abbottic, which cannot happenz
e

during runaway. Since g(z) is a monotonically growing func-
tion with a maximum the perturbation site is theg

c
, z

e
\ z

c
Ðrst one that becomes critical to Abbott waves on the evolv-
ing overloaded solution. We emphasize that the amount of
overloading is solely determined by z

e
.

At some height above the gravity maximum, the deceler-
ating solution jumps back to the accelerating branch, giving
a second kink : the wind has overcome the bottleneck and
starts to accelerate again. In the present wind model, the
(imaginary, overloaded) solution becomes real again at z \

being the location where the solution becomes Ðrst1/z
e

(z
e

imaginary). For the overloading is m \ 1.025, andz
e
\ 0.8,

the wind can start accelerating again at z \ 1.25. In the
simulation, however, m \ 1.05, and the second kink occurs
at z \ 1.6. The discrepancy in m can be attributed to mesh
resolution, which blurs out This leaves still unansweredz

e
.

why the wind ““ waits ÏÏ so long before it starts accelerating
again.

Furthermore, starting with a shallow wind as initial con-
ditions instead of a critical wind, the simulation converges
again to an overloaded solution. However, the jump from
the decelerating back to the accelerating branch does not
terminate on the steep but already on the shallow overload-
ed solution with m \ 1.05. This is a numerical artifact
caused by nonreÑecting, outer boundary conditions, which
try to maintain shallow solutions. As above, we prefer this
situation over any boundary-induced, numerical runaway.

A third kink may occur. For realistic radiative Ñuxes
above accretion disks, we Ðnd that at still larger distances
from the disk, the line force drops below absolute gravity
for all solution types (Feldmeier & Shlosman 1999).
Another jump to the decelerating branch is unavoidable.
Since the local wind speed is much larger than the local
escape speed, the velocity law stays essentially Ñat above
this kink.

3.4. T ime-dependent Overloaded W inds

Already a minor increase in the mass-loss rate causes a
broad deceleration region. This is a consequence of g(z)
having a broad maximum at Integrating w@(z) \ vv@z

c
.

numerically, we Ðnd that for If isv(1/z
e
) \ 0 z

e
\ 0.660. z

e
still smaller, the gas starts to fall back toward the photo-
sphere before it reaches and collides with upward-1/z

e
streaming gas. A stationary solution is no longer possible.
Figure 6 shows, for that an outward propagatingz

e
\ 0.5,



z
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FIG. 6.ÈVelocity v and mass Ñux m of a wind perturbed at z
e
\ 0.5.

During each perturbation cycle, gas falls back toward the photosphere and
collides with upward-streaming gas. Shocks form and propagate outward.

sequence of shocks and dense shells form. The shock
spacing is determined by the perturbation period.

As a technical comment, we add that the latter simulation
tends to develop extremely strong rarefactions and, corre-
spondingly, very large velocities. The latter cause the
Courant time step to approach zero. This is a well-known
artifact of the power-law form of the CAK line force, g

l
P

implying as o ] 0. The true line force reaches(v@/o)a, g
l
] O

instead a Ðnite maximum in a Ñow that is optically thin
even in very strong lines (Abbott 1982). This is achieved by
truncating the line distribution function (Owocki, Castor, &
Rybicki 1988). Using a simpler approach that suffices for
the present purposes, we simply truncate m at large values.

Even for implying negative speeds, overload-z
e
\ 0.660

ing is small, only 9% above the critical CAK value
(m \ 1.088). This shows that the CAK mass-loss rate is a
signiÐcant upper limit for mass-loss rates in LDWs, with or
without mass overloading. If overloading occurs, it should
be detectable only via broad, decelerating Ñow regions.

It is important to distinguish the present runaway from
the well-known line-driven instability (Lucy & Solomon
1970 ; Owocki & Rybicki 1984 ; Lucy 1984), which leads to
strong shocks and dense, narrow shells in the wind. For
perturbations longer than the Sobolev scale, the instability
can be understood as a linear process in second-order
Sobolev approximation, including curvature terms v@@. By
contrast, runaway occurs already in Ðrst-order Sobolev
approximation, yet Ðnite perturbations are required to
achieve v@ \ 0.

3.5. Triggering Perturbations

We discuss the following topics related to triggering :

Amplitudes.ÈStill, even perturbations with small ampli-
tudes can lead to runaway if their wavelength is sufficiently

short to cause negative v@. One expects, however, that dissi-
pative processes like heat conduction prevent runaway for
short wavelength perturbations.
Coherence.ÈIn a hydrodynamic instability, a feedback
cycle ampliÐes small initial perturbations. Even pertur-
bations of short duration trigger unstable growth. By con-
trast, the present wind runaway requires a continuously
maintained perturbation seed. No feedback occurs. The
runaway is a pure wave feature caused by the peculiar v@
asymmetry of the line force.Perturbations of short duration
lead to a localized runaway. The wind is shifted toward
larger v and m within a small z interval. If the perturbation
ceases, so does the runaway. The region of increased v and
m propagates upstream as an Abbott wave and eventually
lifts the wind base to a stable shallow solution with slightly
higher m. Successive Abbott waves lift the wind until the
critical or an overloaded solution is reached.
Surrounding medium.ÈOne expects that mismatches at the
outer boundary, where the wind propagates into a medium
of given properties, create perturbations that can trigger
runaway. This is supported by the fact that at large z the
velocity law is almost Ñat, and even small-amplitude pertur-
bations can cause v@ \ 0. The Abbott speed is large at large
z since A D 1/(v@)1@2 ; hence, perturbations propagate inward
quickly. We performed tests with the outer boundary at
z \ 40. Inherent interpolation errors are sufficient then to
set o† boundary runaway.
Other sources.ÈInner wind perturbations could occur
because of prevalent shocks from the line-driven instability
(Owocki et al. 1988). The critical point usually lies close to
the sonic point (Owocki & Puls 1999 ; Feldmeier & Shlos-
man 1999), and it is therefore not easy to contemplate
strong shocks below the critical point. This means that per-
turbations at large and not at small z dominate the runaway
and drive the wind to a critical solution. Hence, overloaded
winds formed by internally generated perturbations should
be rare.

3.6. Critical Points and Mass-L oss Rate

We discuss here some general issues related to critical
points and mass-loss rates in di†erent types of stellar winds.

HolzerÏs wind laws.ÈThe idea that upstream, inward propa-
gating waves adapt the wind base to outer (boundary) con-
ditions is fundamental to solar wind theory. From this grew
the recognition that an outward force that is applied above
the sonic (critical) point does not a†ect the mass-loss rate
but only accelerates the Ñow, whereas a force applied below
the sonic point increases the mass-loss rate but has a van-
ishing e†ect on terminal wind speeds (Leer & Holzer 1980 ;
Holzer 1987). These ““ wind laws ÏÏ have proven to be of
interest for cases far beyond the coronal winds for which
they were Ðrst applied. We refer to Lamers & Cassinelli
(1999) for a detailed discussion.

Most relevant to us is the case of a force applied in the
subcritical wind region, causing enhanced mass loss. For
coronal winds, the subsonic region has essentially a baro-
metric density stratiÐcation. Any extra force assisting the
pressure gradient helps to establish a larger scale height.
From the continuity equation, a shallower velocity gradient
results, although the terminal speed is hardly a†ected. The
corresponding situation, analyzed by us for LDWs, is even
simpler. No outward force occurs besides line driving. Our
choice of zero sound speed emphasizes that the barometric
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stratiÐcation plays no role for mass-loss runaway or for
establishing an overloaded solution. Overloaded LDW
solutions have a steeper velocity gradient than the critical
solution, as can be seen from equation (7). Physically, a
steeper velocity gradient is required to create a generalized
critical point below the CAK critical point. In LDWs, a
critical acceleration w@ \ vv@, not a critical speed v, is
adopted at the critical point and prevents further Abbott
wave runaway.
Physical relevance of critical points.ÈThe physical relevance
of the CAK critical point was questioned by Lucy (1975,
1998), arguing that it may be an artifact of Sobolev approx-
imation. Holzer (1987, p. 296) doubts that critical points,
i.e., singularities of the Ñow equations, generally coincide
with those points beyond which ““ information relevant to
the acceleration of the wind ÏÏ can no longer be transported
upstream. We have tried in the present paper to reestablish
a more traditional viewpoint (Courant & Friedrichs 1948 ;
Courant & Hilbert 1968), namely, that a critical point as a
mathematical singularity leaves certain derivatives of Ñow
quantities undetermined. This is only possible along charac-
teristics, which are the space-time trajectories of the speciÐc
waves in the problem. This establishes the transonic (or
trans-Abbottic, etc.) nature of the critical point. Similarly,
one can argue that the critical point is a singularity because
di†erent solution branches cross there. Hence, by passing
continuously from one branch to another (actually, by
staying on a certain branch), higher order or weak discon-
tinuities appear in the Ñow properties, for LDWs, in v@@.
Again, weak discontinuities propagate at characteristic
wave speed, making the critical point transonic.
Mass-loss rate as an eigenvalue.ÈWe remind the reader of a
deep di†erence between coronal and line-driven winds. For
coronal winds, the mass-loss rate is a free parameter within
wide margins and is determined by the base density. For
LDWs, on the other hand, the mass-loss rate is a unique,
discrete eigenvalue (CAK). This is a consequence of the line
acceleration depending on o ; see Lamers & Cassinelli
(1999).
Abbott speed and speed of light.ÈIn the literature, the pro-
pagation speed of radiative waves is occasionally identiÐed
with the speed of light. This is not true in general : the
Abbott speed and, in magnetized Ñows, the speed areAlfve� n
smaller than the speed of light. To make the point totally
obvious, note that the di†usion speed of photons through
stellar interiors is much smaller than the speed of light. The
basic cause is here the same as for Abbott waves : optical
depths larger than unity.

3.7. Deep-seated X-Rays, Infall, and Mass Overloading

Besides adapting the wind base to outer Ñow conditions,
we Ðnd that Abbott waves can even lead to mass inÑow.
This seems like a novel feature of these waves, and it leads
to interesting observational consequences, like explaining
the formation of hard X-rays anomalously close to the sur-
faces of hot stars. Formation depths of r B 1.1 areR

*
deduced from X-ray emission lines observed with the
Chandra satellite (for f Ori, see Waldron & Cassinelli 2001 ;
for f Pup, see Cassinelli et al. 2001). The favored model for
X-ray emission from hot stars is via strong shocks (Lucy
1982) from the deshadowing instability (Lucy & Solomon
1970 ; Owocki & Rybicki 1984). The shocks become strong-
est in collisions of fast clouds with dense gas shells

(Feldmeier, Puls, & Pauldrach 1997). From theoretical
arguments (line drag e†ect ; Lucy 1984) and numerical simu-
lations, it appears that this shock scenario cannot explain
X-rays originating from the small heights mentioned above.

Howk et al. (2000) suggest gas infall as possible origin of
X-rays from near the photosphere. They consider a ballistic
model of stalled wind clouds falling back toward the star to
explain the hard X-rays observed from q Sco (Cassinelli et
al. 1994). At any instant, B10% of the mass Ñux from the
star resides in numerous, º1000, clouds that barely reach
distances of r \ 2 before falling back inward. The overallR

*
resemblance of this cloud model with time-dependent wind
overloading as shown in Figure 6 is striking. In the latter
case, the overloading is sufficiently mild that upstreaming
gas can push downfalling clumps outward (which corre-
sponds to the drag force of ambient wind gas in Howk et
al.). Stronger overloading is achieved by shifting the Abbott
wave source farther inward but cannot be addressed using
our simple numerical approach. Clearly, two-dimensional
simulations are required to model true infall. A systematic
study relating the Howk et al. approach with ours is in
preparation.

Note that the critical point in stellar wind models
accounting for the Ðnite cone e†ect lies at r ¹ 1.1 R

*
(Pauldrach et al. 1986). An overloaded wind starts to decel-
erate below the critical point and may already reach nega-
tive or infall speeds at similarly small heights. This shows
the relevance of overloading in understanding the Chandra
observations mentioned above. The topic of stalling and
backfalling gas has acquired some general attention in
recent papers on LDWs and is discussed in di†erent con-
texts by Friend & Abbott (1986), Poe et al. (1990), Koninx
(1992), Proga, Stone, & Drew (1998), and Porter & Skouza
(1999).

We Ðnally mention another idea related to overloaded
Ñows, which has played some role in sharpening our under-
standing of coronal winds. Cannon & Thomas (1977) and
Thomas (1982) challenged ParkerÏs (1958, 1960) theory of
the solar wind. They postulated an outward-directed, sub-
photospheric mass Ñux. In analogy with a Laval nozzle (see,
e.g., Chapman 2000, p. 127) into which a too strong mass or
energy inÑux is fed (Cannon & Thomas 1977 use the ter-
minology ““ imperfect nozzle ÏÏ instead of ““ overloading ÏÏ), the
solar outÑow should choke, creating shocks below the
nozzle throat or the critical point of the smooth (perfect
nozzle) Ñow. The shocks are responsible for heating the
chromosphere and corona, making the latter a conse-
quence, not the origin, of outÑow from the Sun. This model
was ruled out by Parker (1981) and Wolfson & Holzer
(1982).

Still, it leads to another interesting di†erence between
coronal and Laval nozzle Ñows on the one side and LDWs
on the other : the former two do not allow for continuous,
overloaded solutions ; instead, overloaded Ñows have
shocks in the vr plane where the critical point resides. By
contrast, overloaded LDWs show jumps in the critical vv@-r
plane, i.e., jumps in the wind acceleration, which correspond
to kinks in a continuous velocity law.

4. SUMMARY

We have studied the stability of shallow and steep solu-
tions for accretion-diskÈ and stellar line-driven winds. This
was done by introducing Ñow perturbations into the wind
at a Ðxed height. For sufficiently large perturbation ampli-
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tudes, negative velocity gradients occur in the wind and
cause runaway toward the critical solution. The origin of
this runaway is an asymmetry in the line force : negative
velocity gradients cause a force decrease that cannot
balance the force increase during phases in which the veloc-
ity law gets steepened. Net acceleration results over a full
perturbation cycle.

A new type of waves, termed Abbott waves, are exited by
the perturbations. They provide a communication channel
between di†erent parts of the wind and deÐne an additional
critical point in the Ñow, downstream from the sonic point.
Shallow solutions are subcritical everywhere ; steep solu-
tions are supercritical. Along shallow solutions, Abbott
waves propagate upstream toward the photosphere at a
high speed as a radiative mode and creep downstream at a
fraction of the sonic speed as an acoustic mode. The critical
solution is the one that switches continuously from the
shallow to the steep branch at the critical point.

Inward-propagating Abbott waves turn the local, asym-
metric response to velocity perturbations into a global
runaway toward the critical solution. The converged, steady
wind solution depends on the location of seed pertur-
bations. Three spatial domains can be distinguished : (1) If
perturbations are prevalent in outer wind regions, above
the critical point, the wind settles on the critical solution. (2)

If perturbations occur just below the critical point, runaway
proceeds to a stationary, so-called overloaded solution.
Such a Ñow is characterized by a broad deceleration
domain. The line force cannot balance gravity in the vicinity
of the critical point (the bottleneck of the Ñow) because of a
supercritical mass-loss rate. (3) Perturbations close to the
photosphere result in the wind being decelerated to negative
speeds. Gas falls back toward the photosphere and collides
with upward-streaming gas. A time-dependent, overloaded
wind results with a train of shocks and shells propagating
outward.

The runaway mechanism discussed here depends solely
on the asymmetry of the line force with respect to velocity
perturbations that cause local Ñow deceleration, dv/dr \ 0.
It should, therefore, be a robust feature and not depend on
Sobolev approximation.
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ÈÈÈ. 1982, ApJ, 255, 286
ÈÈÈ. 1984, ApJ, 284, 351
ÈÈÈ. 1998, in Cyclical Variability in Stellar Winds, ed. L. Kaper & A. W.

Fullerton (Berlin : Springer), 16
Lucy, L. B., & Solomon, P. M. 1970, ApJ, 159, 879
Owocki, S. P., Castor, J. I., & Rybicki, G. B. 1988, ApJ, 335, 914
Owocki, S. P., & Puls, J. 1999, ApJ, 510, 355
Owocki, S. P., & Rybicki, G. B. 1984, ApJ, 284, 337
ÈÈÈ. 1986, ApJ, 309, 127
Parker, E. N. 1958, ApJ, 128, 664
ÈÈÈ. 1960, ApJ, 132, 175
ÈÈÈ. 1981, ApJ, 251, 266
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86
Poe, C. H., Owocki, S. P., & Castor, J. I. 1990, ApJ, 358, 199
Porter, J. M., & Skouza, B. A. 1999, A&A, 344, 205
Proga, D., Stone, J. M., & Drew, J. E. 1998, MNRAS, 295, 595
Rybicki, G. B., & Hummer, D. G. 1978, ApJ, 219, 654
Thomas, R. N. 1982, ApJ, 263, 870
Waldron, W. L., & Cassinelli, J. P. 2001, ApJ, 548, L45
Wolfson C. J., & Holzer, T. E. 1982, ApJ, 255, 610



THE ASTROPHYSICAL JOURNAL, 566 :392È398, 2002 February 10
( 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

RUNAWAY ACCELERATION OF LINE-DRIVEN WINDS: THE ROLE OF THE OUTER BOUNDARY

ACHIM FELDMEIER

Astrophysik, Institut Physik, Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany ;fu� r Universita� t afeld=astro.physik.uni-potsdam.de

ISAAC SHLOSMAN1,2
JILA, University of Colorado, Box 440, Boulder, CO 80309-0440 ; shlosman=pa.uky.edu

AND

WOLF-RAINER HAMANN

Astrophysik, Institut Physik, Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany ;fu� r Universita� t wrh=astro.physik.uni-potsdam.de

Received 2001 May 4; accepted 2001 October 11

ABSTRACT

Observations and theory suggest that line-driven winds from hot stars and luminous accretion disks
adopt a unique, critical solution that corresponds to maximum mass-loss rate. We analyze the numerical
stability of the inÐnite family of shallow wind solutions, which resemble solar wind breezes, and their
transition to the critical wind. Shallow solutions are subcritical with respect to radiative (or Abbott)
waves. These waves can propagate upstream through shallow winds at high speeds. If the waves are not
accounted for in the Courant time step, numerical runaway results. The outer boundary condition is
equally important for wind stability. Pure outÑow conditions, as assumed in the literature, trigger
runaway of shallow winds to the critical solution or to accretion Ñow.

Subject headings : accretion, accretion disks È hydrodynamics È instabilities È stars : mass loss È
waves

1. INTRODUCTION

Line-driven winds (LDWs) occur in various astronomical
objects, such as OB and Wolf-Rayet stars, in accretion disks
in cataclysmic variables, and, probably, in active galactic
nuclei and luminous young stellar objects. These winds are
powered by absorption and re-emission of photospheric
continuum Ñux in numerous spectral transitions of C, N, O,
and Fe, among other ions.

Castor, Abbott, & Klein (1975, hereafter CAK) analyzed
the steady state Euler equation for LDWs. They found an
inÐnite family of mathematical solutions, but only one,
hereafter the ““ critical solution,ÏÏ that extends from the
photosphere to arbitrarily large radii. Other solutions either
do not reach inÐnity or do not reach the photosphere. The
former solutions are called shallow and the latter ones
steep. The unique, critical wind starts on the fastest shallow
solution and switches smoothly to the slowest steep solu-
tion at the critical point.

Observational support that LDWs adopt the critical
solution comes from measured terminal speeds (Abbott
1982). Furthermore, mass-loss rates of supergiant winds are
in general agreement with modiÐed CAK theory (Lamers &
Leitherer 1993 ; Puls et al. 1996). These measurements were
recently extended to include Galactic and extragalactic OB
and A stars and central stars of planetary nebula (Kudritzki
et al. 1999).

Abbott (1980) interpreted CAK theory as a complete
analogy to the solar wind and nozzle Ñows. The existence of
a sonic point deÐnes the unique, transonic solutions for
these Ñows, whereas the existence of a critical point for
Abbott waves deÐnes the unique, CAK solution for LDWs.
Only from below this critical point can Abbott waves pro-

1 JILA Visiting Fellow.
2 Permanent address : Department of Physics and Astronomy, Uni-

versity of Kentucky, Lexington, KY 40506-0055.

pagate upstream toward the photosphere. Above the criti-
cal point, they are advected outward. Because Abbott waves
generally propagate highly supersonically, the critical point
of LDWs lies at much higher speeds than the sonic point.

AbbottÏs (1980) analysis was challenged by Owocki &
Rybicki (1986), who derived the GreenÏs function for a pure
absorption LDW. The GreenÏs function yields correct signal
speeds in the presence of hydrodynamic instabilities. The
inward signal speed in a pure absorption line wind is the
sound speed, and not the much higher Abbott speed,
because photons propagate outward only. Owocki &
Rybicki (1986) showed that a Ðducial upstream signal,
which still propagates inward at Abbott speed, must be
interpreted as purely local Taylor series reconstruction. For
a Ñow driven by scattering lines, however, Owocki & Puls
(1999) Ðnd physically relevant Abbott waves for a numerical
GreenÏs function.

In the present paper, we further analyze the properties of
Abbott waves. We show that they are crucial for our under-
standing of stability of LDWs and must be included in the
Courant time step. So far, time-dependent numerical simu-
lations of LDWs from stars and accretion disks have
ignored the ability of Abbott waves to communicate in the
supersonic regime, which results in a numerical runaway. In
particular, this runaway can lift the wind to the critical
solution.

The critical solution is also enforced by applying pure
outÑow boundary conditions. It is often argued that
outÑow boundary conditions are appropriate because
LDWs are highly supersonic. Instead, they have to be super-
abbottic. We show that shallow wind solutions, which cor-
respond to solar wind breezes, are everywhere subabbottic.
Hence, these solutions are numerically destabilized by
applying outÑow boundary conditions.

We formulate boundary conditions that render shallow
solutions numerically stable. Those include nonreÑecting
Riemann conditions for Abbott waves. By allowing for
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kinks in the velocity law, shallow solutions can be made
globally admissible.

2. THE WIND MODEL

In the CAK model for LDWs, both gravity and line force
scale with r~2. If the sound speed and, hence, the pressure
forces are set to zero, this leads to a degeneracy of the
critical-point condition, which is satisÐed formally at every
radius (Poe, Owocki, & Castor 1990). Thus, in this case,
Abbott waves cannot propagate inward from any location
in the wind. For Ðnite sound speed, they creep inward at
low speed. Inclusion of the Ðnite disk correction factor is
much more relevant for LDWs than inclusion of pressure
forces. With the Ðnite disk included, the inward speed of
Abbott waves below the critical point is signiÐcantly higher
than the wind speed. Unfortunately, the Ðnite-disk correc-
tion factor depends on the (unknown) velocity law of the
wind, preventing a simple analysis of the wind dynamics.

We consider, therefore, a wind model that is analytically
feasible and yet prevents the (near-)degeneracy of the CAK
point star wind. (Especially, this degeneracy leads to poor
convergence of time-dependent numerical schemes.) As a
prototype, a vertical LDW from an isothermal, geometri-
cally thin, non-selfÈgravitating accretion disk is assumed.
The sound speed is set to zero. Keplerian rotation is
assumed within the disk and angular momentum conserva-
tion above the disk. This reduces the Ñow problem to a
one-dimensional, planar one. The radiative Ñux above an
isothermal disk is roughly constant at small heights. On the
other hand, the vertical gravity component along the wind
cylinder is zero in the disk midplane, grows linearly with z if
z > R (with R the footpoint radius in the disk), reaches a
maximum, and drops o† at large z. To model the launch
region of the wind and the gravity maximum, we choose
g(z) \ z/(1 ] z2), with normalization GM \ 1 and R \ 1,
where G is gravitational constant and M is the mass of the
central object. The di†ering spatial dependences of Ñux and
gravity result in a well-deÐned critical point in the Ñow.

For constant radiative Ñux, the CAK line force becomes
where o and v are the density and veloc-g

l
\ C(o~1dv/dz)a,

ity and a and C are constants. We choose a \ 1/2. Typical
values of a from nonÈLTE calculations (Pauldrach 1987)
and KramersÏ law (Puls, Springmann, & Lennon 2000) are
a \ 0.4 to 0.7. The constant C can be expressed in terms of
the unique, critical CAK mass-loss rate. This is the
maximum allowed mass-loss rate for a stationary wind. We
introduce new Ñuid variables m and w,

m \
ov

o
c
v
c

, w \
1

2
v2 , (1)

where subscript c refers to the critical CAK solution. For
stationary, plane-parallel winds, the continuity equation
becomes ov \ const, and m is a constant. In the following,
the quantity w@ \ dw/dz \ v dv/dz will play a central role.
The velocity law, v(z), is obtained by quadrature of the wind
““ solution ÏÏ w@(z). For a \ 1/2, the stationary Euler equation
becomes

E \ w@ ] g(z) [ 2(g
c
w@/m)1@2 \ 0 , (2)

where we multiplied the nominator and denominator in the
line force by v, and introduced the gravity at theg

c
\ g(z

c
),

location of the CAK critical point. The dependence of w@ on
z is suppressed in the equation. The constant C is deter-

mined as follows. Equation (2) is a quadratic equation in
Consider the For arbitrary z and suffi-Jw @. Jw @E-plane.

ciently small m, the crossings E \ 0 of the parabola E(Jw @)
with the abscissa determine two wind solutions w@(z),
termed shallow and steep. When m increases, the crossings
approach each other, and merge at some maximum m º 1,
beyond which no further solutions exist. Hence, the singu-
larity condition LE/Lw@ \ 0 holds when two solutions merge,
as is the case at the critical point. Together with E \ 0, this
yields andw@

c
\ g

c
C \ 2(g

c
o
c
v
c
)1@2.

We add a comment that is important for what follows. At
every location m [ 1 for the parabola that meets thez D z

c
,

abscissa in just one point. The minimum, m \ 1, is reached
at the unique critical point, which is the Ñow nozzle andz

c
,

determines the maximum mass loss that can be driven from
the photosphere to inÐnity. Solutions (actually, pairs of
shallow and steep solutions) with m [ 1 are called overload-
ed. They correspond to a choked Laval nozzle Ñow. These
solutions become imaginary in the neighborhood of the
critical point. We have shown elsewhere (Feldmeier &
Shlosman 2000) how overloaded LDW solutions can be
deÐned globally, by letting them decelerate, dv/dz \ 0,
around the critical point.

The position of the critical point is determined by the
regularity condition, which is derived next. Because E \ 0
everywhere, dE/dz \ 0 holds, too. Because itLE/Lw

c
@ \ 0,

follows that if This latter conditionLE/Lz
c
\ 0, o w@@

c
o \ O.

singles out the unique critical point, because overloaded
winds have kinks at the merging point of two solutions,
o w@@ o 4 O. Hence, the critical point lies at the gravity
maximum, For g(z) \ z/(1 ] z2), anddg/dz

c
\ 0. z

c
\ 1

The line force in equation (2) becomes (2w@/m)1@2.g
c
\ 1/2.

This holds for any solution, whether shallow or steep.
Solving equation (2) for Jw @,

q(z) 4 [2mw@(z)]1@2 \ 1 ^ [1 [ 2mg(z)]1@2 , (3)

where we introduced a new variable, q. The signs refer to
steep (plus) and shallow (minus) solutions. For m \ 1, the
square root in equation (3) vanishes at the critical point.
For m [ 1, the root becomes imaginary in the neighbor-
hood of the critical point. The solutions w@(z) of equation (3)
have a saddle topology in the zw@-plane when m is varied
from m \ 1 to m [ 1. The critical pointÈz

c
\ 1, w@

c
\

the saddle point. A variable radiative Ñux above a1/2Èis
nonisothermal accretion disk leads instead to two di†erent
values of above and below the gravity maximumz

c
,

(Feldmeier & Shlosman 1999). The lower is a saddle, the
upper an extremum.

Note that the CAK critical point of LDWs is a saddle in
the z-vv@ plane, whereas the sonic point of the solar wind is a
saddle in the zv-plane. In all other respects, we Ðnd a deep
analogy between LDWs and the solar wind. Only the
notion of a critical speed is replaced by a critical acceler-
ation. Shallow solutions are the analogs to solar wind
breezes.

According to equation (3), shallow and steep solutions
with m ¹ 1 extend from z \ 0 to O for the present model
with zero sound speed. CAK found that steep solutions
start supersonically at the wind base z \ 0, which seems
unphysical. In a spherically symmetric wind, shallow solu-
tions do not extend to arbitrarily large z, because they
cannot provide the required expansion work. These two
results and the requirement for a continuous and di†eren-
tiable solution imply that the wind has to pass through the
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critical point. It starts on the fastest shallow solution and
ends on the slowest steep one.

Figure 1 (which is adapted from Fig. 4 in Abbott 1980
and Fig. 8.13 in Lamers & Cassinelli 1999) shows the LDW
solution topology in the rv-plane for a Ðnite sound speed. In
region II (regions deÐned in CAK), which is spatially the
most extended in real LDWs, shallow and steep solutions
exist at each point (r, v). If these solution pairs mayz D z

c
,

be overloaded. In the subsonic region I, only shallow solu-
tions (possibly overloaded) exist ; steep solutions are neces-
sarily supersonic. Correspondingly, only steep solutions
(possibly overloaded) exist in region III. No solutions exist
in regions IV and V. Note that the gap in overloaded solu-
tions around can be bridged by an extended deceleratingz

c
region, dv/dr \ 0.

The argument by CAK ruling out global, steep solutions
is stringent, but the exclusion of shallow solutions seems too
restrictive. The pressure force due to spherical expansion
becomes important only at very large distances from the
wind base. According to CAK, shallow solutions break
down around 300 stellar radii for realistic O star wind
parameters. Most shallow solutions have by then overcome
the local escape speed. Shallow solutions can be globally
deÐned by a slight generalization of the CAK approach,
allowing for negative v@ \ dv/dz in the line force DJv @.
This can be done by replacing v@ with o v@ o or with max(v@, 0).
The former expresses the ““ blindness ÏÏ of purely local line
driving to Ñow acceleration or deceleration. The latter
accounts for the nonlocal e†ect of shadowing in non-
monotonic velocity laws, creating a resonance coupling. All
radiation is assumed to be absorbed at the Ðrst resonance
location. Realistically, the value of the line force lies
between these extremes. The decelerating wind solution,
w@ \ 0, is unique and does not split into shallow and steep
branches.

Hyperbolic di†erential equations allow for weak discon-
tinuities, which are represented in the zw@-plane by jumps
between di†erent solution branches. Hence, a shallow solu-
tion may jump onto the decelerating branch. Even an over-
loaded solution can avoid becoming imaginary by jumping
onto the decelerating branch in the vicinity of the critical

FIG. 1.ÈSolution topology of line-driven winds, showing shallow,
steep, and overloaded solutions. The circle marks the CAK critical point.
Roman numerals refer to cases IÈV of CAK. Regions IÈIII and V are
mutually separated by straight lines (sound speed v \ a ; Parker point

regions II and IV are separated by the single locus.r \ r
P
) ;

point. This opens the possibility that global solutions can be
composed in a piecewise manner.

Jumps in w@ introduce kinks in v(z). Such kinks have been
found on various occasions in time-dependent LDW simu-
lations. They may play a central role in the observed dis-
crete absorption components in nonsaturated P Cygni line
proÐles (Cranmer & Owocki 1996). In LDWs from accre-
tion disks in cataclysmic variables, a jump onto the deceler-
ating branch even occurs for the critical solution, which
would elsewhere not extend to inÐnity (Feldmeier & Shlos-
man 1999). Hence, the smoothness argument of CAK
cannot be used to disqualify shallow solutions.

3. ABBOTT WAVES

3.1. L inear Dispersion Analysis

The time-dependent continuity and Euler equations for
the present wind model are

Lo

Lt
]

L(ov)

Lz
\ 0 , (4)

Lv

Lt
] v

Lv

Lz
\ [

z

1 ] z2
]
A

2o
c
v
c

Lv/Lz

o

B1@2
. (5)

In the Euler equation, v@ [ 0 is assumed. The case v@ \ 0
will be discussed below. To derive Abbott waves, small per-
turbations are applied, and o \v \ v

0
] v

1
exp[i(kz [ ut)]

[i(kz [ ut)]. The subscript 0 refers to a station-o
0

] o
1
exp

ary solution, subscript 1 to the perturbation. Linearizing
yields

C
[i

u

v
0
@

] is ] 1
D o

1
o
0

] (is [ 1)
v
1

v
0

\ 0 , (6)

1

q
0

o
1

o
0

]
C

[i
u

v
0
@

] 1 ] is
A

1 [
1

q
0

BD v
1

v
0

\ 0 , (7)

with nondimensional s 4 k andv
0
/v

0
@ q

0
\ (2m

0
w

0
@ )1@2.

Setting the determinant of the system to zero yields the
dispersion relation u(k). In a WKB approximation, s ? 1,
one Ðnds for the phase speed and the growth rate of theA

0
inward (minus) mode,

A
0

\ Re(u
~

)/k \ v
0
[1 [ (1/q

0
)], Im(u

~
) \ 0 , (8)

in the observerÏs frame, and for the outward (plus) mode,

A
0

\ Re(u
`

)/k \ v
0
, Im(u

`
) \ [v , (9)

with [v a small damping term of no further consequence.
Along a shallow solution and along a steep solutionq

0
\ 1,

For shallow solutions with small and isq
0

[ 1. m
0

w
0
@ , q

0
small, and the inward mode can propagate at arbitrarily
large phase speed from every location z. This result is new,
because so far Abbott waves along shallow solutions were
not considered (““ a LDW has no analog to a solar breeze ÏÏ ;
Abbott 1980). Because for the CAK point star model every
point is critical, and the inward mode is stagnatingq

0
\ 1,

everywhere. Stability of nonÈWKB waves, s \ O(1), is found
from a numerical solution.

Integrating equation (3), the velocity of the critical solu-
tion at (the ““ critical speed ÏÏ) is v B 0.61. On the otherz

c
\ 1

hand, a shallow solution with has v [ 0.61 form
0

\ 0.8
z [ 1.51. This is no contradiction to the fact that the
shallow solution is subabbottic.
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3.2. Characteristic Analysis

The above analysis holds for linear waves, and the wave
speed is determined by the underlying stationary solution.
General, nonlinear waves can be derived from a character-
istic analysis. The characteristic form of the above equa-
tions is, without further approximations,

C L

Lt
] v

L

Lz

D
o \ [o

Lv

Lz
, (10)

C L

Lt
] A

L

Lz

DA1

o

Lv

Lz

B
\ [

1

o

Lg

Lz
(11)

(Feldmeier & Shlosman 2000), where the Abbott speed, A,
in the observerÏs frame is

A \ v
A

1 [
1

q

B
\ v [

A o
c
v
c

2oLv/Lz

B1@2
. (12)

The interpretation of equation (11) is unconventional, in
that v@ should now be considered the fundamental hydrody-

namic Ðeld, instead of v. This happens because of the non-
linear dependence of E on v@ (Courant & Hilbert 1968).

Hence, [ov@ in the continuity equation and [g@/o in the
Euler equation are inhomogenous terms, because they do
not contain derivatives of the hydrodynamic Ðelds o and v@.
The advection operators are L/Lt ] vL/Lz and L/Lt ] AL/Lz,
with characteristic speeds v and A. The former should be
read as v ] a in zero sound speed approximation. The
Riemann invariants o and v@/o correspond to wave ampli-
tudes. In a frame moving at v, the amplitude o is constant,
except for sources and sinks [ov@. In an isothermal gas
p D o, and the wave amplitude is indeed that of a pressure
wave. In a frame moving at A, the amplitude v@/o is con-
stant, except for sources and sinks [g@/o. The Sobolev
optical depth is D(v@/o)~1, indicating that the inward mode
is a radiative wave.

Even for waves of inÐnitesimal amplitude, v@ may deviate
strongly from if the wavelength j is short. Becausev

0
@ ,

A D (v@)~1@2, short-scale Abbott waves are highly dispersive.
For sufficiently small j, v@ becomes negative at certain wave
phases. The characteristic equations (10) and (11) hold also
for v@ \ 0, but A has di†erent meaning then. For a line force
Do v@ o1@2, the general A is

A \ v[1 < (1/q
B

)] , (13)

where the lower sign applies for v@ \ 0 and in one has toq
~

use [v@. Trivially, Abbott waves are advected outward in
superabbottic Ñow. But that Abbott waves propagate down-
stream as an outward mode in regions where v@ \ 0 is prob-
ably their single most unique property.

For a line force D[max(0, v@) ]1@2, then, A \ v if v@ \ 0.
This is because the line force drops out of the Euler equa-
tion, and both wave modes become ordinary sound.
(Actually, A \ v [ a for upstream-propagating sound.) In
this case one has, along a characteristic curve with coordi-
nate s,

o(s)

o(0)
\

v@(s)

v@(0)
\

1

1 ] v@(0)s
(14)

as the WKB wave solution of equations (10) and (11). This
describes gasdynamical simple waves. Because v@(0) \ 0,

they steepen and break (v@ \ [O). The derivation of simple
Abbott waves is beyond the scope of this paper.

4. BOUNDARY CONDITIONS FOR LINE-DRIVEN WINDS

We discuss now the outer boundary conditions for
shallow solutions. Abbott waves can enter through the
outer boundary ; hence, pure outÑow boundary conditions
are not appropriate for shallow solutions.

As hydrocode we use a standard Eulerian scheme on a
staggered mesh. Advection is solved in the conservative
control volume approach, using monotonic van Leer (1977)
interpolation. The sound speed is set exactly to zero, and a
small amount of artiÐcial viscosity is added to handle
occasional shock fronts. Details of the scheme can be found
in Reile & Gehren (1991) and Feldmeier (1995).

In a Ðrst step, we consider simple boundary conditions
for o and v that still preserve essential features of Abbott
waves. These boundary conditions render shallow solutions
stable and allow small perturbations to leave the grid. They
are

o(0) \ const, v(0) \ v(1) ,

o(I) \ o(I [ 1), v(I) \ const , (15)

where 0 and I are the mesh indices of the inner and outer
boundary, respectively. The conditions (eq. [15]) are moti-
vated as follows. (The reader may jump to the end of this
paragraph.) On a characteristic curve [z(s), t(s)] that leaves
the mesh through a boundary, the characteristic equation is
solved on the boundary via extrapolation, using one-sided,
interior di†erentials. Such an upwinded scheme is stable
(Steger & Warming 1981). For shallow winds, the o wave
leaves through the outer boundary if v [ 0 ; hence, o is
extrapolated from the interior in (15). Zeroth-order
extrapolation is used for stability reasons. Abbott waves
enter the mesh through the outer boundary ; hence, a
boundary condition must be applied. We choose
v(I) \ const. [To prevent standing waves, isv(I) \ m

0
/o(I)

often more appropriate, but is also more susceptible to
runaway than v(I) \ const.] At the inner boundary, the
argument proceeds correspondingly, with interchanged
roles of the waves. We Ðnd that using o(0) \ o(1) and
v(0) \ const instead destabilizes shallow solutions.

4.1. T he Courant T ime Step

In time-dependent hydrodynamic simulations published
so far, it is customary to insert the sound speed in the
Courant time step,

*t \ p min (*z/ o v ^ a o ) , (16)

with Courant number p ¹ 1, and the minimum has to be
taken over the mesh. We see now that Abbott waves, as the
characteristic inward wave mode, have to be included in the
Courant time step,

*t \ p min
A *z

o v [ A o
,

*z

v ] a

B
, (17)

where A is in the Ñuid frame now. Note that A changes sign
with v@. For sufficiently small v@ [ 0 and for arbitrary v@ \ 0,
Abbott waves determine the time step. At velocity plateaus
where the wind velocity is more or less constant, A][O,
from equation (11), and the Courant time step ]0. This is
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an artifact of Sobolev approximation, in which the line radi-
ation force tends to zero in the absence of velocity gradients.
In practice, in calculating the Courant time step we do not
allow q to drop below a certain minimum value, usually
10~4. This corresponds to p B 10~4 for an ordinary
Courant time step, not including Abbott waves. Our results
are not sensitive to the value of this minimum q, if the latter
is sufficiently small. Furthermore, velocity plateaus quickly
acquire a tilt and propagate at Ðnite speed.

4.2. NonreÑecting Boundary Conditions

We can then formulate nonreÑecting boundary condi-
tions for the Riemann invariants o and v@/o, which annihi-
late incoming waves. This prevents boundary reÑection of
waves that originate on the interior mesh. To annihilate a
wave, its amplitude (the Riemann invariant) is kept constant
in time at the boundaries, L(v@/o)/Lt \ 0 and Lo/Lt \ 0 for
Abbott and sound waves, respectively (Hedstrom 1979 ;
Thompson 1987). One may say that nonreÑecting boundary
conditions drive the numerical solution toward a neighbor-
ing, stationary solution without waves. The technical details
of implementing these boundary conditions are discussed in
Appendix A.

5. STABILITY OF SOLUTIONS

We discuss here the numerical stability of shallow and
steep solutions, depending on the appropriate Courant time
step and boundary conditions.

5.1. Stability of Steep Solutions

We start with steep solutions and show that they are
unconditionally stable, even when simpliÐed boundary con-
ditions analogous to equation (15) are used. According to
equation (3), q [ 1 everywhere for steep solutions, and
Abbott waves can propagate only toward larger z. At the
outer boundary, the extrapolations o(I) \ o(I[1) and
v(I) \ v(I[1) are therefore appropriate. At the inner
boundary, two conditions have to be speciÐed. The obvious
choices are either (o \ const, v \ const) or (o \ const,
v@ \ const). The Ðrst set Ðxes the mass-loss rate, whereas the
second establishes nonreÑecting boundary conditions by
keeping the wave amplitudes o and v@/o constant in time,
which means that there are no waves.

We Ðnd that steep solutions are stable for both types of
boundary conditions. Even when the initial conditions
di†er profoundly from those of a steep wind, the numerical
code converges to a steep solution. Furthermore, we per-
formed tests with an explicit, harmonic perturbation at a
Ðxed Eulerian position in the wind. Even if the perturbation
amplitude reached 100%, the wind remained on average on
a steep solution, which can therefore be considered as
unconditionally stable.

5.2. Stability and Runaway of Shallow Solutions

A physically more relevant question is the stability of
shallow solutions. In a Ðrst step, we use an analytic, shallow
wind as initial conditions. Table 1 shows the runaway of this
shallow solution to the critical velocity law. Abbott waves
are not accounted for in the Courant time step, and pure
outÑow boundary conditions, o(I) \ o(I [ 1) and
v(I) \ v(I [ 1), are applied. This corresponds to the typical
procedure adopted in the literature. The runaway starts at
the outer boundary and generates inward-propagating

TABLE 1

NUMERICAL RUNAWAY OF A SHALLOW VELOCITY LAW

z t \ 0 t \ 3 t \ 6 t \ 9 t \ 20 t \ O

0.1 . . . . . . 0.0 0.0 0.0 0.0 0.0 0.0

0.5 . . . . . . 0.2 0.2 0.2 0.2 0.2 0.2

1.0 . . . . . . 0.5 0.4 0.6 0.6 0.6 0.6

1.5 . . . . . . 0.6 0.6 0.9 1.0 1.0 1.0

2.0 . . . . . . 0.7 0.8 1.2 1.4 1.4 1.4

2.5 . . . . . . 0.8 0.9 1.3 1.5 1.8 1.8

3.0 . . . . . . 0.8 1.1 1.3 1.5 2.1 2.1

3.5 . . . . . . 0.8 1.1 1.4 1.6 2.2 2.4

4.0 . . . . . . 0.8 1.2 1.4 1.6 2.3 2.7

Abbott waves. The velocity law evolves toward higher
speeds, until the critical solution is reached.

The mechanism of the runaway seems to be as follows.
The Courant condition for Abbott waves is violated in the
outer wind, where the velocity law is Ñat and the Abbott
speed is high. This causes numerical runaway. In contrast to
standard gas dynamics, the LDW runaway does not crash
the simulation. We speculate that exponential growth in v
creates high o v@ o , which implies low Abbott speeds. The
Courant condition is no longer violated, and runaway
stops. Abbott waves are also excited at the outer boundary,
by switching from the interior to the boundary scheme.
Upstream-propagating Abbott waves are inconsistent with
the assumed outÑow boundary conditions. The waves pro-
pagate to the wind base and drive the inner wind toward the
critical solution, which is indeed consistent with outÑow
boundary conditions.

Note in Table 1 that Abbott waves can propagate inward
from the outer boundary, until the critical velocityz

M
\ 4,

law is reached (indicated by bold numbers in the table). This
is no contradiction to the critical point being located at

the outer, shallow portion of the velocity law (thez
c
\ 1 :

numbers in italics) is subabbottic, even when the inner,
steep velocity law is already superabbottic.

To prevent numerical runaway of shallow solutions, we
apply nonreÑecting Riemann boundary conditions and
include Abbott waves in the Courant time step. As initial
conditions, an arbitrary (for example, linear) velocity law is
used. Abbott waves are again excited at the outer boundary
and propagate inward. However, the simulation relaxes
quickly to a shallow solution. The m-value depends on the
initial data. Even for an initial model with height-dependent
mass Ñux, we Ðnd quick convergence to a shallow solution.

Further details on the stability of shallow solutions are
given in Appendix B. To summarize this section, both
improper outer boundary conditions and Courant condi-
tions that do not account for Abbott waves are responsible
for numerical runaway.

6. SUMMARY

We present a simpliÐed model for line-driven winds from
stars and accretion disks that avoids the r~2 degeneracy of
the CAK model. Radiative, or Abbott, waves are derived
from both a dispersion and a characteristic analysis and for
all possible solutions to the Euler equation, i.e., shallow,
critical, steep, and overloaded ones.

We Ðnd that Abbott waves can propagate upstream,
toward the photosphere, from any position along a shallow
wind solution. Hence, for shallow winds, Abbott waves can
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TABLE 2

RUNAWAY IN SIMULATIONS APPLYING DIFFERENT BOUNDARY CONDITIONS AND COURANT TIME STEPS

Run z
M

Grid Points Line Force Abbott Time Courant Number Boundary Condition Result

1 . . . . . . . 4 200 abs(v@) No 0.5 OutÑow Runaway

2 . . . . . . . 4 200 abs(v@) No 0.1 OutÑow m
0

\ 0.7 ; oscillating

3 . . . . . . . 4 200 abs(v@) No 0.5 Shallow Runaway

4 . . . . . . . 4 200 abs(v@) No 0.1 Shallow Runaway

5 . . . . . . . 10 200 abs(v@) No 0.1 OutÑow Runaway

6 . . . . . . . 4 200 abs(v@) Yes 0.5 OutÑow m
0

\ 0.5 ; oscillating

7 . . . . . . . 10 200 abs(v@) Yes 0.5 OutÑow Slow runaway

8 . . . . . . . 10 500 abs(v@) Yes 0.5 OutÑow Slow runaway

9 . . . . . . . 4 80 abs(v@) Yes 0.5 OutÑow m
0

\ 0.5 ; oscillating

10 . . . . . . 4 200 abs(v@) Yes 0.5 Shallow Stable

11 . . . . . . 4 200 max(0, v@) No 0.5 OutÑow Accretion

12 . . . . . . 4 200 max(0, v@) No 0.1 OutÑow Accretion

13 . . . . . . 4 200 max(0, v@) No 0.5 Shallow Stable, oscillating

14 . . . . . . 4 200 max(0, v@) No 0.1 Shallow Stable, oscillating

15 . . . . . . 10 200 max(0, v@) No 0.1 OutÑow Accretion

16 . . . . . . 4 200 max(0, v@) Yes 0.5 OutÑow Accretion

17 . . . . . . 10 200 max(0, v@) Yes 0.5 OutÑow Accretion

18 . . . . . . 10 500 max(0, v@) Yes 0.5 OutÑow Accretion

19 . . . . . . 4 80 max(0, v@) Yes 0.5 OutÑow Accretion

20 . . . . . . 4 200 max(0, v@) Yes 0.5 Shallow Stable

enter the calculational grid through the outer boundary.
The wave propagation speed depends on the velocity slope
of the wind. AbbottÏs (1980) result that these waves are
creeping, i.e., have only slightly negative inward speeds,
holds globally only for the almost degenerate CAK point
star model. In more realistic wind models, Abbott waves
can limit the Courant time step.

The neglect of Abbott waves in either the Courant time
step or the boundary conditions leads to numerical
runaway toward the critical wind solution of maximum

mass-loss rate or to accretion Ñow. If, instead, incoming
waves are annihilated at the outer boundary and the correct
Courant time step is used, shallow solutions are stable.
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97A to I. S., which are gratefully acknowledged.

APPENDIX A

NONREFLECTING BOUNDARY CONDITIONS

We adopt the following procedure to calculate o and v on a boundary. (1) If the o wave leaves the grid, iso5 \ [(ov)@
calculated using one-sided, interior di†erentials. (2) If the o wave enters the grid, is set (wave annihilation ; see ° 4.2). (3)o5 \ 0
If the v@/o wave leaves the grid, is calculated from the Euler equation (eq. [11]) in characteristic form, using one-sided,v5 @/v@
interior di†erentials. Note that v@@ appears here. (4) If the v@/o wave enters the grid, is set, assuming WKB waves. (5)v5 @/v@ \ o5 /o
The new values for o and v on the boundary are found by integrating and using a time-explicit scheme.o5 v5 @

In step 5, one actually needs not To integrate from time step n [ 1 to n at the outer boundary using we writev5 , v5 @. v5 @,

v@n \ v@n~1 ] v5 @*t . (A1)

Using and similarly for v@n~1, this becomesv@n \ (v
I
n [ v

I~1
n )/*z,

v
I
n \ v

I
n~1 ] v

I~1
n [ v

I~1
n~1 ] v5 @*z*t , (A2)

whence depends on Because of frequent variable updating in an operator splitting scheme during the time step,v
n
I v

I~1
n~1. v

I~1
n~1

would have to be stored as an extra variable. This seems undesirable, and indeed it causes numerical runaway of shallow
solutions. Fortunately, a simple approximation to equation (A2) yields satisfactory results, namely, setting orv

I~1
n~1 4 v

I~1
n ,

v
I
n \ v

I
n~1 ] v5 @*z*t . (A3)

APPENDIX B

NUMERICAL STABILITY OF SHALLOW SOLUTIONS

For numerical stability tests, we assume the following parameters, if not otherwise stated : 200 equidistant grid points from
z \ 0.1 to z \ 4. Below z \ 0.1, the stationary wind speed is very small. Because one has for an innerdv/A

0
\ do/o

0
, v

0
> A

0
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boundary Even small perturbations, do, then cause negative speeds at This alters the direction of the o character-z
m
]0. z

m
.

istic and often causes numerical problems. A shallow solution with m \ 0.8 serves as start model. The sound speed is set to
zero. The Ñow time from z \ 0.1 to z \ 4 is 12.4 for a shallow solution with m \ 0.8, and 9.1 for the critical solution (in the
units speciÐed in the main text). For m \ 0.8, linear Abbott waves propagate from z \ 4 to z \ 0.1 in a time of 6.0. All
simulations are evolved to time of 50. Table 2 lists results from simulations using di†erent outer boundary conditions and
Courant time steps. On the inner boundary, conditions (eq. [15]) were used.

Consider Ðrst the line force Do v@ o1@2. The table shows that inclusion of Abbott waves in the Courant time is mandatory to
prevent runaway (runs 1È5 ; ““ shallow ÏÏ in the column for the outer boundary conditions refers to eq. [15]). For small Courant
numbers, Abbott waves are, to a degree, already accounted for by an ordinary time step. Runaway may then be prevented, as
in run 2, though the solution does oscillate at all times. If the outer boundary is shifted outward, the runaway occurs again
(run 5). If Abbott waves are accounted for in the time step, outÑow boundary conditions (extrapolation of o and v) do not
necessarily lead to runaway. Instead, a stable, shallow solution may be maintained (runs 6 and 9 ; also run 2). However, the
solution oscillates at all times. Shallow solutions become more unstable when the outer boundary is shifted outward, into the
shallow part of the velocity curve where Abbott waves are easily excited. Finally, the control run 10 shows that the initial
shallow solution is numerically stable if Abbott waves are included in the time step and boundary conditions of equation (15)
are used.

For a line force D [max (0, v@)]1@2, the scheme is even more susceptible to numerical runaway. All cases with outÑow
boundary conditions undergo runaway. However, for the boundary condition v(I) \ v(I [ 1), the solution no longer tends
toward the critical solution. Instead, v(I) drops to zero and with it the interior wind velocity. The outcome of the simulation is
not clear, because we have not formulated appropriate line-driven accretion boundary conditions. The reason for the drop in
v(I) is that an accidental v@ \ 0 at the outer boundary implies zero line force. This causes further velocity drop, and v@ becomes
more negative. Abbott waves carry this wind breakdown to the interior mesh. It is not clear whether this type of line force
should actually be applied in the proximity of the outer boundary.
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