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ON GROUP-VELOCITY
By Horace Laus, F.R.S.

[Received and Read, February 11th, 1904.]

By a ‘“group” is meant, in this connection, a long succession of
waves in which the distance between successive crests, and the amplitude,
vary very slightly. The well-known formula connecting the group-velocity
U with the wave-velocity V, viz.,

av

U= V—Aﬁ’

1
was obtained originally by considering the result of superposing two
infinite simple harmonic wave-trains of equal amplitude and slightly
different frequency.* The extension to a more general type of group
was made by Rayleight and Gouy.! The argument of these writers
admits of being put very concisely. Assuming a disturbance

y = ZC cos(nt—kz+e), (2)

where the summation (which may of course be replaced by an integration)
embraces a series of terms in which the values of », and therefore also of
k, vary very slightly, we remark that the phase of the typical term at
time ¢+ A¢ and place z+ Az differs from the phase at time ¢ and place
by the amount nA¢—kAz. Hence if the variations of » and & from term
to term be denoted by dn and Jk, the change of phase will be sensibly
the same for all the terms, provided

nAt—dk Az = 0. 3)
The group as & whole therefore travels with the velocity

_ Az _dn
=A% @

Since n = kV, k = 2=/A, this agrees with (1).

* Rayleigh, Proc. London Math. Soc., Vol. 1., p. 21 (1877) ; Theory of Sound, § 191.
1 Nature, Vol. xxv., p. 52 (1881); Scientific Papers, Vol. 1., p. 540.
1 ““Sur la vitesse de la lumiére,’’ Ann. de Chim. et de Phys., Vol. xvi. p. 262 (1889),
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Another derivation of (1) can be given which is, perhaps, more intuitive.
In 2 medium such as we are considering, where the wave-velocity varies
with the frequency, a limited initial disturbance gives rise in general to a
wave-system in which the different wave-lengths, travelling with different
velocities, are gradually sorted out.* If we regard the wave-length A as a
function of z and ¢, we have

oA
ot

+U gx 6)

since A\ does not vary in the neighbourhood of a geometrical point
travelling with velocity U; this is, in fact, the definition of U. Again, if
we imagine another geometrical point to travel with the waves, we have

N LV dv &
at+Va;., N TN o ©)

the second member expressing the rate at which two consecutive wave-
crests are separating from one another. Combining (5) and (6), we are
led, again, to the formuls (1).

It has been pointed out by the writert that this formula admits of a
simple geometrical representation : viz., if a curve be constructed with A
as abscissa and ¥ as ordinate, the value of U for any assigned value of A
is given by the intercept which the corresponding tangent to the curve
makes on the axis of ordinates.

A question of some interest arises, as to whether it is possible for the
group-velocity, in any real case, to be negative.! This was proposed to
the writer by Prof. Schuster, who pointed out that the optical formule
relating to anomalous dispersion indicate a negative group-velocity for
certain portions of the spectrum lying within the regions of “special
absorption. This appears readily from the curves§ by which the
refractive index (u) is exhibited as a function of the wave-length #n vacuo
(A\p. The formula Vo R du

|
U - p— >\0 d)\ (7) ‘t

which is easily derived from (1), shows that the group-velocity is now wn-

* As, for example, in the waves on deep water due to a local disturbance of finite duration
(Cauchy, Poisson).

1 See Manchester Mem., Vol. xuiv., No. 6 (1900), where a number of examples are given.

+ That is, to have the opposite sign to the wave-velocity.

§ See, for example, Drude, Lekvbuch d. Optik, p. 362.

|| Gouy, loe. cit.
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versely proportional to the intercept made by the tangent on the axis of
ordinates, and it is evident on inspection that for certain ranges of A, this
intercept is, in the case referred to, negative. It is to be observed, how-
ever, that the notion of group-velocity, as hitherto developed, ceases
to be applicable when the absorption is so intense that the distance
within which the amplitude falls to (say) one half of its original value
becomes-comparable with the wave-length.

It is easy, however, to devise mechanical arrangements, free from
dissipation, in which the group-velocity shall be negative. We may
begin, for instance, with a long straight wire subject to a longitudinal
thrust (P), instead of a tension. This is of course unstable, but we may
obtain stability for waves exceeding a certain length, if we imagine, in
addition, that every point of the wire is attracted towards its equilibrium
position by a force varying as the distance. The equation of transverse
vibration is now of the form

%t%+pJ+cﬁg{,— 0, ®)

where ¢ = P/p, p being the density. Assuming a solution
y = C cos (nt—kz), ©)
we find B = (p*—nd)/d, UV =—¢c, 10)*

provided % < p/c.

We may secure stability for all values of A by further endowing the
wire with a sufficient degree of stiffness. The equation of motion then
assumes the form#t

2 y
Y rpy+e Y+ Tl=o, an
which gives #* = p’— K+ a*Pk, UV = — 2423’k (12)

Hence 7 will be real for all values of % provided ¢® < 2«ap, whilst U will
have the opposite sign to V for waves so long that k* < 3c?/c®a®. It may
be noticed that vibrations below.a certain frequency (determined by
n? = p*—%c¢'/x*a®) cannot be propagated. For sufficiently long waves

* The curve exhibiting the relation between ¥ and A has the form of the hyperbula

z_

t+ See Rayleigh, Sound, §188,
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the flexural term in (11) is insensible, and we fall back on the former
case.

" Another example, in which there may be negative group-velocity for
all wave-lengths, together with thorough stability, is- furnished by an
arrangement employed by Lord Rayleigh* in & different counnection.
This consists of a tense wire attracted to its equilibrium position by
a force varying as the distance, and endowed with rotatory inertia, but of
negligible stiffness.t The differential equation is now of the form

%y 0% 0%

o TP 5 g = O a3
where a® = T/p, T being the tension, and « is a radius of gyration.
This gives

_p*+Hd s __ p—n

w 1456 = kK’ni—a?’

(14)

pt—a’ —a’)“
and thence uv = — lf_’czkg)g Kp (15)
The condition for negative group-velocity is therefore «*p?>a®. It will
be observed that vibrations for which a/k <n<p can alone be pro-
pagated.

It is known that the velomty U determined by (1), also expresses the
rate at which energy is propagated.; The proof applies without
qualification to such cases as we have been considering; and we infer,
both from this and from the former line of argument, that when a local
disturbance is produced in a medium having the property in question
groups of waves will be propagated outwards, whilst the individual waves
composing a group will be found to be moving inwards. It may be
worth while to illustrate this by means of one of our mechanical
arrangements ; for simplicity we may take the one first considered. It
will help to make the matter clearer if we introduce a slight degree of
viscosity, so that the equation (8) is replaced by

o2 0 o
-—tg+p2y+u§%+c“‘éxﬂg = 0. (16)

* Phil. Mag., Vol. xuv1. (1898) ; Scientific Papers, Vol. 1v., p. 369.

+ This might be realized by a cylindrical wire with a series of close equidistant peripheral
cuts extending nearly to the axis.

+ Cf. Osborne Reynolds, Nature, Vol. xv1., p. 343 (1877), Scientific Papers, Vol. 1., p. 198,
for the case of water waves. The proof for the general case was given by Rayleigh in the paper
cited first on p. 473 ante.
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If we suppose that a forced vibration
y = C cosnt amn

1s maintained at the origin, the disturbance established to the right of
O will be found by assuming

y = Ceint+ax’ (18)
provided that in the end we retain only the real part. Substituting in
(16), we have o = — (P*—n’+-w)/c?, 19)
and therefore, on account of the assumed smallness of v,

a= % ik F v[2k?, (20
where k is the positive quantity determined by (10). In order to secure
finiteness for & == o, the upper signs must be taken, and the realized solu-
tion 18 y = C e~ cog (nt4kz), @1)
representing a train in which the individual waves are travelling nwards
towards the source of disturbance.

If we regard v as infinitesimal, the mean energy per unit length will

be double the mean kinetic energy,* and is therefore equal to 3pn?C%. On
the other hand, the rate at which work is supplied at the origin is

a_?i oy _ s 2
P el T PknC?sin?® (nt+kz), (22)
the mean value of which is $PknC® This is equal to the energy in a
length U, if .
g=t 2 _ka 23)
nop n

This agrees with (10), since V is now equal to —n/k.

We may also illustrate the problem of reflection and transmission at a

point where the properties of the medium are discontinuous. Referring

to Lord Rayleigh’s modification of the tense wire, we may suppose that
to the right of the origin the equation (18) holds, whilst to the left of O
Py _ 2% _

o8 %o T

where a} = T/p,. Taking the amplitude of the waves incident from the

(24)

* This familiar relation ceases to hold when » has to be taken into account.,
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left as unity, we assume ,
y = ei (nt—kox)_l_A ei(m+k'oz) [.'E < 0], (25)

y = B ¢t (nt+ka) [:l: > 0]’ (26)+

so that 4 denotes the amplitude of the reflected, B of the transmitted,
waves. The conditions to be satisfied at the junction z =0 are to be
found from the consideration that to the right of O we have a shearing

force

F = 9

2 33;1/
= P mop @)

whilst to the left of O we have F=0. Since the values of y and
F+T 0y/ox must evidently be continuous, we have

144 =B, (28)
kopoto (L~ 4) = kp (Pr*—a?) B, (29)
P S P (e
whence we find B=2 / l1+ e ( p 1) j (80)

This may be expressed in terms of # and constant quantities by means of
(14) and the relation k; = n?/ay; thus

—2/ 1+—£\/———1) (%—1)} (81)

If we take the real parts of the expressions in (25) and (26), then, corre-
sponding to an incident vibration

y = co8 (nt—k,z), (82
we have a transmitted vibration
y = B cos(nt+kx). (88)

The potential energy per unit length at any point to the right of O is
{ 81/) 2 }
1 2,2 Zd
p) lP.p Yy +T (a,v )

the mean value of which is Zp(p’+4%%a®) B% The mean total energy per
unit length will be twice this. Hence, if I denote the ratio of the

+ The necessity for the adoption of ¢+ Az instead of the usual n¢—Z%z in the exponential
might be made clearer by the introduction of a small frictional term into the equation (13). It
would then appear that an assumption of the form y = Be'(-*%) would involve the existence of
asonrce at v =+,
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transmitted to the incident energy, per unit time, we shall have

I= M‘ii—:{z]i:i] B (34)

By means of (14) and (15) this can be put in a variety of forms : thus for

example I % ( % _1> " 5
Comparing this with (80), we find

I =@2—-B)B. (86)

This is in accordance with the principle of energy, for, if I' denote the
ratio of the energy of the reflected to that of the incident waves, it makes

I+I' = 2—B)B+4* =1, 87
by (28).

It is hardly to be expected that the notion of a negative group-velocity
will have any very important physical application; but the preceding dis-
cussion may serve to emphasize the point that ideas of wave-propagation
acquired in the study of air-waves (for example) need to be used with some
caution when we are dealing with a dispersive medium.



